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Foreword

Compiled in this volume are seven papers from agencies working

with the Guidance Laboratory of NASA/ERC. These papers are of special

studies in the disciplines of trajectory analysis, astrodynamics, and
celestial mechanics.

They include:

(1) An extension of variational theory to cover problems
involving functions that can be represented approximately

only, through as closely as desired;

(Z) A presentation of an orthonormalization procedure for

achieving a least squares approximation of a multivariate
function;

(3) A development of an analytic solution for minimum fuel
impulsive transfer between low eccentricity orbits;

(4) A development of a method for calculating "geometric"

bounds for conditions where, if the total energy of the

three-body problem is negative, then one body will recede

to infinity from the other two bodies;

(5) A development of a power series for the problem of three

bodies where the coefficients in the series are generated

by reversive operations;

(6) A development of rigorous error bounds for approximate
satellite orbit theories;

(7) A development of a general perturbation theory for the

long-term behavior of high eccentricity orbits about Mars.

The first paper, along with extensions to this work, will be useful in

trajectory analysis and guidance theory. The second paper should support
trajectory analysis and guidance theory in supplying approximations to

functions where only numerical values are available. The third paper will

contribute to mission design and, in general, to astrodynamics studies.
The fourth paper will be useful for trajectory analysis on mission design,

along with contributing to studies in celestial mechanics. The last three

papers will be useful in celestial mechanics, specifically orbit determi-

nation or prediction.

R. JYHaye_, _hief

Guidance Laboratory

W. E, Miner, Chief

Guidance Theory and

Trajectory Analysis Branch
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SUMMARY

This volume contains technical papers on NASA-sponsored

studies in the areas of trajectory analysis and guidance

theory. The studies are being carried on by several uni-

versities and industrial companies. These papers cover a

period ending October i, 1966. The technical supervision of

the contracts is under the personnel of the Guidance Labora-

tory.
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Introduction

Compiled in this volume are seven technical papers from

agencies working under contract, or grant, to NASA's Elec-

tronics Research Center (ERC) in the fields of guidance

theory and trajectory analysis. This work was sponsored by

the Guidance Laboratory at the NASA Electronics Research

Center.

The following table presents the contributing institution,

the section of greatest relationship, and the discipline of

the paper.

SECTION INSTITUTION/COMPANY DISCIPLINE

Trajectory Northeastern Univ.

Trajectory Northeast La. State

Astrodynamics AMA

Celestial Mechanics CRA

Celestial Mechanics IBM

Celestial Mechanics Stanford Univ.

Celestial Mechanics Stanford Univ.

Calculus of Variation

Functional Models

Impulse Transfers

Celestial Mechanics

Celestial Mechanics

Celestial Mechanics

Celestial Mechanics

The present organization for the laboratory effort is

shown in Figure i.

The following are reviews of the individual papers.

Paper No. i

The first paper by J. Warga of Northeastern University

is a contribution toward the development of variational theory

by the methods of modern analysis. Applications are expected to

be made on practical problems that cannot be handled satisfac-

torily by the standard variational theory. The basic technique

is to imbed the set of admissible control functions in a larger
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FIGURE 1

set that possesses an extremizing solution for the problem,

and then to approximate that solution as closely as is desired

with one of the original control functions. The present paper

presents and proves the required existence and approximation

theorems, and extends previous work on this theory done by

Prof. Warga. Future work will include the development of the

corresponding necessary conditions for an extremum and the

consideration of constructive methods by which the solutions

may be determined in practice.

Paper No. 2

The second paper is a technical progress report from

Northeast La. State by D. E. Dupree and R. T. Truax. This

paper first reviews the development of an orthonormalization

procedure for achieving a least squares approximation of a

multivariate function. The authors then go through the develop-

ment of a weighting function to augment the least squares

approximation. This is done in an attempt to require the

resultant error to be less than a specified error tolerance.

As yet the work is incomplete in that the proof only succeeds

in showing that the weighted error will not exceed that of the

unweighted function.

Multivariate functional models are useful whenever func-

tional approximation is needed for numerical data. Examples

are cut-off requirements, time-of-ignition, and steering angles
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which can often be numerically, but not analytically, generated.

The objective here was to control the errors of such approxi-
mations. Work will continue in this area. The basic ortho-

normalization procedure has been programmed at ERC and will be

used in application. To date no work has been done in imple-

menting the weighting function.

Paper No. 3

The third technical paper, prepared by T. N. Edelbaum of

AMA, entitled "A General Solution for Minimum Impulse Transfers

in the Near Vicinity of a Circular Orbit," develops an analytic

solution for the minimum fuel transfer between low eccentricity

orbits. The author shows that in all cases a two-impulse

transfer suffices. The results are derived by applying Lawden's

primer concept. The range of validity of the results is deter-

mined by the applicability of the linearized equations of

motion.

The fact that analytic solutions of the two-point boundary

value problem were obtained makes this paper a valuable con-

tribution to the state of the art in trajectory optimization

and guidance theory. The impulsive solutions are ready approx-

imations for finite time trajectory solutions and may be used

as such in guidance modes for on-board as well as ground-based

applications.

Paper No. 4

The fourth technical paper, on Rejection to Infinity by

D. C. Lewis of Control Research Associates, sharpens a result

for the three-body problem due to Birkhoff. Roughly speaking,

the result _ is that if, for given total energy (negative) and

total angular momentum, the three bodies are initially suf-

ficiently close together, then one of the three will ulti-

mately recede infinitely far from the other two. The result

is, however, a very precise one, and a rigorous proof is

given. The condition on the initial configuration is stated

in terms of the Lagrange inertial radius R which is a measure

of "closeness together" of the three bodies. A method is

developed for calculating three quantities RO, R I, and t I such

that if initially R _ Ro, thenrat tl, R > R I. Further, the dis-

tance between the two bodies closest together at t I will remain

bounded (with an estimate given for the bound) thereafter, and

the third body will recede to infinity from these two.

This study was done to get a better understanding of the

problem of three bodies in celestial mechanics. Establishing

the bounds is an advancement which allows us in-house to attempt

to develop methods of studying analytically swing-by trajecto-

ries to distant places.
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Paper No. 5

The fifth technical paper, entitled "An Algorithm to

Obtain Series Expansions for the Three-Body Problem," by

P. Sconzo, IBM, deals with power series solution, both in

the time variable itself and also in terms of a regularizing

variable. Outlines are presented for the recursive generation

of the coefficients in the two series. A lower bound is given

' for the radius of convergence of the series in time and the

relation of this series to the "f" and "g" series representa-

tion of the solution of the two-body problem is briefly dis-

cussed. (It should be noted that the method is of wider

applicability and, in particular, the relation with the "f"

and "g" series might well be exploited for artificial satellite

theory.) Next the properties of a general class of regulariz-

ing transformations are presented with special reference to the

transformation of Levi-Civita. Subsequent reports will deal

with convergence of the series in the regularizing variable

and application of a machine-generated series based on the

recursive formulas mentioned above to a problem of Bohlen for

which numerical calculations by zumkley are available for

comparison. Also included are some comments on a solution of

the three-body problem recently obtained by Bazayevesky in

terms of a power series in time.

While the method used in this report has been previously

applied (Steffenson, Fehlberg, Rabe et aD, there are some

novel features in its development and in the symbolic program

for the generation of the series. The theory developed in

this report is directly applicable to problems for which the

three-body problem forms a good model, for example, to ephemeris

calculations for motion about the sun of two planets or one

planet and its satellite.

Paper No. 6

The sixth technical paper by J. V. Breakwell and

J. Vagners discusses rigorous error bounds for approximate

satellite orbit theories. The paper is concerned with the

error in prediction from initial conditions over a time inter-

val of order I/E for a general perturbation theory developed

in powers of e. The problem is that if one, or more, of the

variables possesses a linear dependence on time, the coeffi-

cients of time in these variables must be calculated to second

order in E in order to obtain a first-order approximation for

time intervals of order I/E. The development is carried out

for earth satellites (_ = J2) using the Brouwer-von Zeipel

technique with Poincar4 variables. The only one of these vari-

ables with a linear second-order (in e) time dependence is an

angle closely related to the mean anomaly. The authors make

use of the energy integral to obtain this second-order coeffi-

cient, thus bypassing the necessity of a full second-order
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"" formulation and integration of the perturbation equation. The

theory includes tesseral harmonics, but omits consideration of

resonance effects arising from the tesseral harmonics and also

from critical angles of inclination. These will be the object

of future investigations. The theory is applied to a circular

2000-mi satellite for 7 days, and the resulting errors are

consistent with the theory.

Paper No. 7

The seventh technical paper, by J. V. Breakwell and R.

D. Hensley of Stanford University, develops a general per-

turbation theory for the long-term behavior of high eccen-

tricity orbits about Mars. Mission requirements on a planetary

orbiter would probably require a small pericenter distance

(for observational purposes) and high eccentricity for saving

of fuel. In this study, a pericenter requirement of 4000 to

6000 km was imposed and eccentricity larger than 0.5 was taken.

For such an orbit about Mars, the orbital period is small com-

pared to the Martian year which, in turn, is small compared

to the rates of change in the orbital parameters due to Mars'

oblateness and the sun. These facts make a double averaging

procedure, first, over the orbital period and then over the

Martian year useful for the study of long period effects. The

dominant perturbation is due to Mars' polar oblateness and

results in secular rates for the argument of the node. The

perturbations caused by the sun result primarily in long period

fluctuations in inclination and eccentricity and hence in peri-

center distance. In addition to the oblateness critical angle

of 63.4 degrees, a number of other critical angles occurs. It

is in the neighborhood of these critical angles that the ampli-

tude of the fluctuations in eccentricity are most pronounced.

A detailed analysis of these resonance effects is given. In

addition, an appendix contains an analysis for small eccentric-

ity (J9 for Mars). As a first step in the analysis of plane-

tary o_biters, this is a very useful study and extension to

include short period effects would be desirable. The applic-

ability of the analysis to orbiters of other planets would

require consideration of the relative magnitudes of the orbital

period, the planet's period about the sun, and the rates of

change of the orbital elements, as well as a study of which

perturbations are dominant. Development of theories for

planetary orbiters is, of course, essential to any extensive

program of planetary exploration.
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Functions of Relaxed Controls"

by J. Worga

Northeastern University

Boston, Massachuseffs

SUMMARY
N67"29371

Problems of the calculus of variations do not admit, in general, ordinary
minimizing solutions. General existence theorems in the calculus of varia-

tions have been established only with the introduction of generalized, or
relaxed, solutions of the given differential equations. These relaxed solu-

tions represent the limits of ordinary solutions with rapidly oscillating
de rivative s.

In the present paper we consider a class of problems of the mathematical

control theory that are not necessarily defined by systems of ordinary dif-

ferential equations; they may involve solutions of certain partial differential
equations, nonadditive set functions, or other functionals. The controls are

functions p from a metric space T, with a given measure, to a metric space
R_, and are subject to restrictions of the form p(t)cR#(t) a.e. in T, where

R_ (t) is, for every t in T, a given nonempty subset of T. We consider

functionals x(p, b) = (xl(p, b) .... xn(p, b)) depending on controls p and on

parameters b restricted to a compact set B 0. The variational problem con-

sists in determining the minimum of xl(p, b), subject to the previously

mentioned restrictions on p and b and the condition that x(p,b) EB1, where
B 1 is a given set in the euclidean n-space.

We establish an existence theorem asserting that, in a large class of
such problems, the restricted minimum is achieved by "relaxed" controls.

We also establish an approximation theorem stating that each such relaxed

control can be constructively approximated by original, or ordinary,
controls.

Necessary conditions for minimum will be discussed in a forthcoming

report.

This research was initiated at Avco Corporation, Wilmington, Massa-

chusetts, under N. A. S. A. -ERC contract _IZ- I IZ, and has been con-

tinued at Northeastern University under _rant NGR ZZ-011-0Z0.
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I. Introduction. The mathematical control theory deals primarily with

functionals defined in terms of a system of ordinary differential equations.

It is our purpose here, and in a paper to follow, to extend certain methods

and results of the control theory to a more general setting. In particular,

we wish to generalize certain results of references [l] and [2]. In this en-

deavor, and especially in arguments pertaining to problems of existence, we

continue to apply certain concepts first introduced by L. G. Young in his

study of "generalized curves" [3], [4].

Let _ be a class of mappings from a set T to a set R, and let xl(i=l,..,n)

be real-valued functionals on _ , that is, functions from _ to the real line.

In many problems, the sets T and R are metric and the vector x of function-

als is characterized by a "weak" continuity, in the sense that x(p) and x(p)

differ little if p_ _, p-_ _ and p(t) andp(t) are at a small distance from one

another for all (or almost all) values of t in T. This type of continuity (with

respect to uniform convergence) has been most frequently investigated in

connection with differential equations (e. g. in the study of perturbation

methods), in the calculus of variations (weak variations), etc.

i

In a large class of problems, the functionals x are also continuous in a

different sense. Let us consider, as an example, the problem of determining

the temperature 0(t_-) at a time t-and at a fixed point _- in the interior of

a conducting body whose surface is subjected to a heat flux that varies with

time and position. If the heat flux is only slightly changed at all times and

over the entire surface, the value 0 (t, _) will change but little. This is

so because 0 (t, _ ) is a continuous functional of the heat flux in the pre-

viously described sense. Assume now that the interval of time [ 0, t-] is

subdivided into 2k equal subintervals, and that at every point z of the surface,



FUNCTIONSOF RELAXED CONTROCS

Zi 2i+ I _-] is replaced bythe flux h(t, z) during the interval [ --_ t-, --_

T
h(t +-_-_,z) andthe flux h(t,z) during the interval [2i+I._ _ ._._..2i+2_-]

is replaced by h(t- _--_, z), for i=O, ],..,k-l. Then for large values of k,

we would expect 0 _, _ to be affected little by this "permutation", even if

the flux h(t, z) is a rapidly varying, or even a discontinuous, function of t.

We would also expect O(t, _) to be little affected by "permuting" the heat flux

between many adjacent small areas of the surface of comparable measures.

This second type of continuity is relative to a mode of convergence resem-

bling the weak convergence of measures. It is of fundamental importance in

control theory and in our further considerations.

The continuity of functionals in this second sense makes it possible to

simulate mathematically the limits of rapidly oscillating functions in _ .

We shall refer to elements of _ (functions from T to R) as "original con-

trols", and we shall imbed _ in a larger space S of"relaxed controls." If

we assume that R is a compact Hausdorff space, then we can define the

class S of regular probability measures on Borel subsets of R. A"relaxed

control" a is a function from T to S. The relaxed control owill simulate the

limit of rapidly oscillating ordinary controls p 1' PZ' " " when for all (or

almost all) t and all Borel subsets R 1 of R, the o (t) -measure of R 1 re-

presents, in some sense, the limit, as j 400, of the relative frequencies of

occurrence inside R I of the points pj(7) in the neighborhood of t. A relaxed

control o with the property that the measure o(t) is, for every t, concentra-

ted at a single point p (t), can be identified with the original control p.

Relaxed controls, patterned after L.C. Young' s definition of "general-

ized curves", provide a means of completing the space _ of original controls.

Their use paves the way, in complete analogy with the calculus of variations,
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to existence and approximation theorems which we state in section 2 and

prove in section 3. The next task is the derivation of necessary conditions

for minimum. We propose to discuss this subject in a paper to follow.

Z. Existence and approximation theorems. We shall assume in this

section, and in sectior_ 3, that T and R are compact metric spaces, that

B 0 is a compact Hausdorff space, and B 1 is a closed set in the euclidean

n-space E . We shall assume, further, that a nonnegative, finite, regular,
n

complete, and nonatomic measure is defined on T. We represent by p, and

sometimes by p(), a mapping from T to R, and by p(t) the image of a point

t under the mapping. A similar distinction is consistently made between a

function (mapping) and the image of a particular point under the mapping. A

mapping from T to R is "continuous" at t (on a set TI) if J p(t), p(t') J-- 0

as t'_t(t'-- t for all tCTl). Here I rl, rz I designates the distance of

points r] and r 2 in R, and similarly I t', t Iwill designate the distance in

T. A mapping from T to R is "measurable" if, for every • > 0, there exists

a closed set F in T, whose measure [ F E J is at least [ T[ -e, and such

that the function p is continuous on F C when restricted to F e

These definitions of continuity and measurability of p can be easily

seen to be equivalent to the following statement: p is continuous at t (on a

set T1), respectively measurable on T 1, if the function _b, defined by

¢(t) = ¢(p(t)) on T, is continuous at t(on T1), respectively measurable on

T1, for every choice of a continuous function ¢ from R to E 1 .

Let R # be a mapping from T to the class of nonernpty subsets of R, and

let _ be the space of measurable functions p from T to R. We are given a

function x: _ × B0_E n. We wish to investigate the original problem of de-

termining the minimum of xl(p, b), subject to the restrictions that

10
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p (t)_R#(t) a.e. in T and x(p, b) cB1. Alternately, we wish to consider

'_approximate minimizing solutions" to this problem. An _fapproximate

00

solution _' 0c is a sequence {p j,_ bj_ }j=l such that the pj are measurable

functions from T to R, bj_B 0, pj(t)_R#(t) a.e. in T, x(pj bj) converges,

as j _0o, to a point x0c, and xoccB 1. An _Tapproximate minimizing solution _

1
is an approximate solution that minimizes x .

Qc

Let now S be the class of regular probability measures defined on the

Borel subsets of R. We shall refer to a function p from T to R as an

Horiginal control H, and to a function a from T to S as att relaxed control '_.

A relaxed control ais °'continuousN, respectively_measurable '_, on a set W 1
/"

if JRcb(r)c(dr;t) is a continuous, respectively measurable, function on T 1

for every choice of a continuous function ¢ : R_E 1. Here _(Rl;t ) repre-

sents the a(t)-measure of a Borel set R 1. We can easily verify that if a is

ameasurable control and R 1 is a Borel subset of R, thena(Rl;t ) is

measurable. We shall denote by $ the set of measurable relaxed controls.

If a relaxed control ap has the property that _p (t) is a measure con-

sisting of a single mass point p (t) a.e. in T, then we refer to it, somewhat

loosely but without any fear of confusionj as the original control p. In this

sense we consider _ to be a subset of S . We shall also treat original,

respectively relaxed9 controls as identical if they differ only on a set of

measure 0 in T.

Definition Z. 1. The Young representation. We shall say that a function

y: S xB 0 _E n is a "Young representation of x_' if y coincides with x

on _ xB0; that is, if y(C_p, b) = x(p,b) for everyb in B 0 and every relaxed

control _p such that ap (t) is concentrated at the single point p (t) a.e. in T.

11
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(We observe that the relaxed control % is measurable if, and only if,

the original control p is measurable).

Let now Ll(T ) be the Banach space of real-valued integrable functions

on T, and let C(R) be the Banach space of real-valued continuous functions

:maxl Ir l, IflLIiTl =on R, both with their conventional norms. (I_ICIR) rER

TJfJ). We shall define functionals k(_, f, o) on C(R)xLI(T ) xZ by

k(¢,f,c;)= _f(t) fR¢(r)a(dr;t).

If o is an original control p, we shall write
P

/-

k(¢, f, ap) = kith, f, p) = JT f(t) _ IP It)).

Definition Z.g. The Young topology on S . We shall say that a sequence

in _ is convergent if the sequence of real numbers {k(@, f, _)}j=_]%, %

is convergent for every choice of (_, _ in C( R)×LIIT ). We shall say that

crin Z is a limit of the sequence crI, _g' "'" if

k_, f, _) = lim k(@, f, on C(R) x
j_00 °J) LI(T)"

We now consider a mapping R # satisfying

Assumption Z.3. For every _ >0 there exists a closed subset T of T, of
E

measure at least IT J " E , with the property that

(Z. 3. I) for everyt-cTg and every rE]_#(t-)(the closure of R#(t)) there

exists a measurable original control p, continuous at t- when restricted

to T e, and such that Jp(_),rJ <_ and p(t)cR#(t) on T;

(Z. 3. Z) the mapping R #, when restricted to T, is continuous with

respect to inclusion, i.e. for every t- in T E and every h>0, there

exists 6 = 5(h, D suchthat R#(t)C U(R#(t-),h) and R#(t')C U(R#It),h)

12
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if tET s and It,rl<6. Here

U(R], h) : {r6 RJ r, rlJ<h for some r I in R]}.

We can now state our basic approximation and existence theorems. The

symbol R# (t) will denote the closure of R#(t).

Theorem Z. 4. Let the mapping R # satisfy condition (2.3. I). Then every

measurable relaxed control _ can be approximated (in the Young topology)

If (_(RO (t);t) = 1 a.e. in T
by measurable original controls O 1, /92' ....

then the controls @ l' p 2' " " " can be chosen so that O j(t)_R#(t) a.e. in T

(j= I, 2, ..).

Theorem 2.5. Let $ # --{o¢ Z Ja(_#(t);t)= I a.e. in T}, and assume that

the mapping R # satisfies Assumption Z. 3. Then the set _ # is sequentially

compact.

Let y be a Young representation of x, and assume that y is con-

tinuous on Z #xB 0 (with respect to the product topology on S #xB0). Let

_# = {_ _Jp(t) c R#(t) a.e. inT}, X= {x(p,b) Ip_#, b_ B0}and

Y = (y(_,b)J_c _ #, bc B0}. Then Y is the closure of X.

As a corollary of Theorems 2.4 and 2.5, we derive

Theorem Z. 6. Let _ # and X be defined as in Theorem Z. 5, and let the

assumptions be the same as in Theorem Z. 5. Then either Y(-hB 1 is

empty, or there exist _ E Z # and _ c B 0 that yield the minimum of

yl(a, b) subject to the condition y(¢;, b)EB I. if the construction described

13
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in 3.3 is used to approximate _ with a sequence Pl' 92,... in _ #, then .,

the sequence {p-j, ]_ }j=°°1 is a minimizing approximate solution of the

original problem. °

3. Proofs of the approximation and existence theorems.

Definition 3. I. A dense sequence of partitions of T [ 5, pp. 171-174].

We shall say that PT is a dense sequence of partitions of T if

{pT 1, pT 2, i . T i. } (i= 1, 2,..); the setsPT = "" }; PT = {Til ' T2'" ' Ji

T_ (j = 1.... ji ) are, for each i = 1, 2, .., measurable and disjoint and

#

_) 3i T i every= T; element of PT i+l is contained in some element ofj= ] J

PTi, for i = 1, 2,..; and to every measurable subset E of T and every

E>0 there correspond a positive integer i(e) and a subset J(E,E) of

{I, Z..... ji(e)} such that [E-E0[ + J E0-E J <e, where E0= _JjeJ(E, ¢ )T_ (e)"

It is well known [ 5s Th. C, p. 173] that there exists a dense sequence of

partitions of T as a consequence of T being metric and compact, and the

measure on T having the properties listed at the beginning of section 2.

We shall require a lemma.

Lemma 3.2. Let e >0, T e have the properties described in Assumption

(2.3. 1), F be ameasurable subset of T e, {R1, R2,..., R m} be a partition

of R into disjoint nonempty Borel subsets, and ae $ , and assume that the

support of o(t) is contained in R# (t)(the closure of R#(t)) for all t in F.

Let k=fF g(Rk;t) (k= 1,..,m). Then there exist a partition of F into dis-

joint measurable sets F 1, F2J .., F m and a measurable original control p

14
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such that, for k -- 1, 2 ..... m, JFkJ = a k, p(t) ¢ R#(t) on T, and p(t) is within

adistance 2E of R k a.e. in F k.

Proof. Let k represent integers from 1 to m, and let

Gk= {t_FJc;(Rk;t)_0 }. For every nonempty subset A of (l,Z .... m} ,

m

let GA= (_ G Since _ O(Rk;t) = c; (R; t) = 1 in T, it follows thatkcA k"

k= 1

F = AL_G A (the union over all nonempty subsets A of {1, 2,..,m}). For

every set A, we can partition G A into disjoint measurable subsets

G (keA) of measure _(Rk;t ). If k_/A we define G A to be the
A

t_A k akempty set. We now let F k = GA, and verify that I FkJ = (k=l .... m).

Let now k be fixed. Since, by construction, a(Rk;t)_0 for teFk, for

everyt- in F k there exists a point r k in R# (t)(-_R k and, by Assumption
T k

(Z. 3. 1), there exists a measurable original control p_, continuous at
k k t k

when restricted to F, and such that J p_(t), r_ J _<_ and p_ (t)eR#(t) on T.

k t t t
Because p is continuous at T when restricted to F, there exists a

t- k r k
neighborhood (relative to Fk) Sk(_') oft- such that J p_(t), _ [<re in

k t t

Nk_); hence p_(t) is within Ze of R k for teNk(t- ). Since F k is covered by
t

open neighborhoods (relative to Fk) Nk(t-), it must be covered a.e. by a de-
k

numerable subfamily, say Nk(_'l), Nk_-2) ..... We now let p(t)= p (t)

for teNk(_) (k=l ..... m;j=l, 2.... ) and p(t) = p_ (t) everywhere else on F.

k tl

Since p_ (t) E R#(t) for all k and j, it follows that p(t)eR#(t) on T. We also

tj

observe that p is measurable and p (t) is within a distance Zs from R k a. e.

in F k (k=l, Z, .., m).

3.3. Proof of Theorem Z. 4. Let the sets T i.(j=l, ..., Ji;i=l,2, .. ) define a
3

dense sequence of partitions of T as in Definition 3. I. Since R is metric

15



TRAJECTORY ANALYSISAND GUIDANCETHEORY

and compact, for every positive integer i we can partition R into disjoint

1
Borel subsets R ki (k=l,..,k i;i=l, 2,..) of diameters not exceeding _-. In

every one of these sets R i Let_k we may arbitrarily select a point irk •

TI/i be defined as in Assumption 2.3, and let T *i = T iJ J (-_ TI/i

(j=l, 2, ..,Ji;i=l, Z,..). For every fixed positive integer i and for every

j=l, Z,...,ji, we may define sets T!j,k(k=l,..,ki) and original controls

i

pj that have the properties described in the statement of Lemma B. 2, with

' i R i i replacing E,F, Fk, Rk, and p, respectively.I/i, T i T j,k' k' and pj

Let now a measurable original control P i be defined for i=l, Z, . . . by the

relations

• T_•Pi(t) = p](t) on 1 (j=l, 2 .... ji ),

Pi(t) = p ](t) on T-T1/i.

We observe that Pi(t)¢R#(t ) on T, Pi(t) is within a distance 3/i of rik a.e.

in T! Ti" fT_ (Rik;t)(k=l, 2,,.k andI ,kl i° ki).

Let now £ > 0, 6 6 C(R), and let E be a measurable subset of T. The

symbol J _ ] will denote the G(R)-norm of 6, i. e., Max J6(r) J • We may
rE R

choose an integer i 0 sufficiently large so that, for every i_io, there exist

a subset Ji of {1, 2,..., ji } and a measurable set E i in T such that

E= v T*i I _%l+l i_El<l /l l ndl irl_ ¢r, ll<¼ /ITliflr, r,l_<3/i.
i JeJi J' "4

Finally, let O(a) represent here a quantity not exceeding a in absolute

Then, for all i>_i0,

k

f. f
E k= 1

value.

_(r_)_(Rk;t) + O(¼E)

fT k.--Z
JeJi * i k= 13

_(rk)a(Rk;t) + 0(}¢)

16
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k.

1

jEJ. k= 1
1

+

jeJi k=l j, k

£

= _ /-*i _ {Pi(t))+ O(_c)

jeJ i -Tj

f

= JE _(Pi(t)) + 0(E).

Thus lira f fE(t)_(Pi(t)) = lira k(_, fiE' P i ) = k((_. fE' a) for every
i_oo T i_co

_be C{R) and every measurable characteristic function fE" It follows that

lim k{_b, f, pi) = k(_b, f, a) for every {_b, f) ¢ C(R)×LI{T ). This completes the
i_o0

proof of the theorem.

The proof of Theorem Z. 5 is largely a generalization of a construction

of L.C. Young [3].

3.4 Proof of Theorem Z. 5. We shall first prove that $ is sequentially com-

pact in the Young topology. Let al, aZ'''" be a sequence in _ , and let
f /-

gj¢_, f) = k¢_, f, _jl = JT fit) JR _¢rI_j(dr;t) (_ _ C(RI, f_ L_(T), j -- ', Z.... I.

The bilinear functionals k. clearly satisfy the relation
J

(3.4. ll Ikj¢_,fll<lfl 1'1 (_c(RI, fE,_(T_, j=,,z .... _, _here

Let now C' (R) be a dense denumerable subset of the separable space

C(R). For all _ C' (R) such that[ _[_1, the sequence of linear functionals

CO

{kj(_b, ) } j=l on LI(T ) has norms bounded by l, as a consequence of relation

(3.4.1}. It follows that there exists a subsequence of the functionals kj((b, },

17
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oO

which we shall continue to designate by {kj($, ) }j=l,' that converges to a

bounded linear functional k($, ) for all _be C' (R). Relation (3.4. 1) clearly

continues to apply to k($,f) for all $cC'(R) and fELl(T). We can easily ex-

tend, by continuity, the definition of k(_b, ), as a bounded linear functional

on LI(T), for all $cC(R) and we verify that k is bilinear and satisfies the

inequality (3.4. 1).

For every fixed $ in C(R), k($, ) is a bounded linear functional on

LI(T) and, as such, can be represented by

fT _ (_, t)f(t),

where e(_, t) is a bounded measurable function on T. Since, for each

_, _(_, t) can be arbitrarily changed on a subset of T of measure 0, we can

determine a subset T' of T such that I T' J = I TIand _ ( , t) is a bounded ,

linear functional on C' (R) for all tET _ . We then verify that l( , t) can be ex-

tended, by continuity, for each tc T', to a bounded linear functional on C(R),

and that fT
k(_,f) = e(_,t)f(t) (_eC(R), teL l(t)).

9-'urthermore, relation (3.4. 1), applied to k(_, f_, implies that there exists

a subset T* of T', of measure JTI, such that

J e (_' t) l --- I_ I on C(R) ×T*.

We can prove this last relation first for all _b_C' (R), and then, by con-

tinuity, for all _b e C(R).

We can, therefore, conclude that there exists a signed regular measure

_(t) for all toT* such that
/-

(3.4.2) _ (_,t) = JR _(r)cr(dr;t) on C(R)×T*.

18
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Thus

j--oolimk($'f'_) = limk.($,f)= k($, f) =j_ooJ _T f(t' /R$(r)G(dr;t)

= k(_,f,a) (feLI(T),_£C(R)).

Since kj(_, f)_>0 for all j if _(r)>_0 on R and f(t)_>0 on T, it follows that

k(_, _ has this property and, therefore, _ (_, t)>_0 a.e. in T*, say in T*(_),

ouR. Furthermore, kj(_l'_ = JT f(t) if _l(r) = l on R, hence
if _(r)>_0

/-

k(_|,_= JT f(t), and it follows that e(@l, t)= l a.e. in T*. Since C(R) is

separable, we can prove, as in previous arguments, that there exists a sub-

set of T # of T of measure ITI such that e (_, t)_>0 on T # for every non-

negative _ in G(R); and £(_I' t) = I on T # if ¢i(r) = ] on R. It follows then

from (3.4.2) that (y(t) is a regular probability measure for every t in T #.

The corresponding mapping (_is measurable on T since g (_,t) is measur-

able for every _EC(R). This shows that ¢;e S and completes the proof that

$ is sequentially compact in the Young topology.

We shall next show that if a sequence (_I'_2' " " " converges to crin the

Young topology, and if 5(R # (t);t) = l a.e. in T (j=l, 2.... ) then q(R#(t);t) =

I a.e. in T. Indeed, let it>0 and let Ttl of measure at leastJT J - tlbe a

closed subset of T such that R # is continuous when restricted to T . Let
n

_>0,_-eT, S ([,6)= {reT J Jt,TJ<6},U(Rr h)betheopenh-neighborhood
£

of a set RICR , UI/Z = U(R#(t-), _-), Ul/2 the closure of U]/2,

U l = U(_ "#(_),E ), and let 6 = 6(c) be such that R#(t) C Ul/2 and

E (t-,6). Let _ in C(R) be such thatR#(-t) C U(R#(t), -_) for all t in S,i

_[(r) = 0 on_i/2, 0<__(r)___| on R, and _(r) = I on R- U I. Then

19
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_>/ a (R- Ul;t);
"S

_ff, 5)

hence or(R- Ul;t )--0 a.e. in S0_{,5(_)) or ¢l(U1;t)= 1 a.e. in S (t', 5(E)).

We observe that, for all t in S (t', 5(_)), U1CU(R#(t),_). It follows that

T o can be covered by open (relative to T o ) neighborhoods in each of which

aCt) is a.e. supported by U(R#(t)s _). Since E is arbitrary, R#(t) is compact

for all t, and the measure a it) is regular, we conclude that _(R#(t);t) = 1 a.e.

in T . Since D is arbitrary, it follows that _(R#(t);t) = 1 a.e. in T. Thus
0

# is sequentially compact.

It follows from the above conclusion and from the continuity of y on the

sequentially compact space S #xB 0 that the set Y is closed. By Theorem

2.4, Y is contained in the closure of X. Since X is obviously a subset of Y,

we conclude that T is the closure of X. This completes the proof of the

theorem.
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Development of Multivariate Functional

Models by Least Squares*

by D. E. Dupree and R. L. Truax

Northeast I. ouis iana State College

Monroe, louisiana

fi67-29372
A technique for deriving an approximating function yielding an error,

in the sense of least squares, less than a specified error tolerance is

developed.

Given:

Problem:

A COMPUTATIONAL TECHNIQUE FOR DERIVING

THE LEASTSQUARESAPPROX_ING FOWCTZON

n + 1 tabular points [Bo, X(Bo)) , [_l,X(_l)}, .... [_n,X(_n))

for the function X = X(_), where _ = (Xl, X2,...,xt).

Choose N + 1 independent functions _0(_), _I(G)_...,_N(_) and
N

determine the polynomial Z uA_@J(_) satisfying the property
J=O

that

n N

F(Ao,_ ....,_) = Z (x(_i) - Z Aj_j(Bi)I2
i=O j=O

is minimum.

5F
A necessary condition for F to be minimum is for

.... ____F= 0. This yields the following system of

*performed under NASA Grant NGR-I9-006-O0i

_F
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normal equations :

AO(_O,_O) + _(_l,_0 ) + ... + _(_,_0 ) = (X,_o)

Ao_o,_+_,_ + ... +_,___ = _,_)

where _ = {X(%), X(_z) ..... X(_)),

_j = (_j(%),_j(_l).... , _j(_n)},j = O,l....,_,
n

and (_,_j) denotes the inner product _ _k(_i)_0j(_i ).
i=O

Using the vectors _O'_l'''"_' define a set of vectors

eo, el,..., eN as follows :

J J-1

{(_j,_j)-z ('_S_)'} 1/_
_=o

This is the orthonormal collection yielded by the Gram-Sehmidt

orthogonalization process_ that is (ek, ej) = O, k _ j, and

(ej, ej) = l, J = 0, i, .... N.

In addition, define the triangular array of coefficients

29
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AO(-Z)

AI(-I) AI(O)

A2(-I) ½(0) %(i)

_(-i) A3(o) _(i) A3(2)

AN(-I) _(0) _(i) A_(2) ..... AN(_-I)

where

A(-I)
1

[ (q_y, _y) Z (_r,, ej )s }1/2
J=O

k = O, 1,...,y-1.
A(k) = _-i

c(%,,%1 z (_,ej)_:} 1/2
J=O

Then _j

written as follows:

and 5(k), 0 < j < N and k = 0,1,2 ..... J-l, can be

k-i

i=0

j-i

ej = Aj(-l)_j - ]_ _(i)e i •
i=0

Then the coefficients of the triangular array and the e j,

0 _< j < N, can be written recursively as follows:

23
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To see how the coefficients of the triangular array and the

e j, 0 _< j < N, are used3 define N + 1 functions as follows:

fo(B)= Ao(-1)_o(_)
J-1

fj(B) = Aj(-1)_j(B) -i=E0 Aj(i)fi(B), 1 < j < N.

Then each fj(B) is a linear combination of the N + l functions

_0(6), _(B), .... _N(B), and

_j = (fj(B0) , fj(Bl) ..... fj(Bn)) = ej.

n N

Thus, F(A0, A1,...,AN) = Z {X(B i) - Z Aj_pj(Bi)] 2
i=o j=o

n N

= z (x(_i) - z A_fj(_i)}_
i=O j=O

F'(._,q,...,_)

and the necessary condition that F' be minimum ylelds the normal

equations

A_ = (_,?0)

B

q = (x,fl)

A_ : (_,_).

26
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N

This yields the function Z _A'fJ(B) =
j=0

n N

Z {X(8 i) - E Aj_j(Si)}s is minimum.
i=0 J=0

N

Z A,_a(_) such that

j=0

DERIVATION OF A FUNCTION SATISFYING A GIVEN

ERROR TOLERANCE IN THE SENSE OF LEAST SQUARES

n N

Although E = Z [X(B i) - Z _A_j(Bi)} s is minimized by the least
i=0 J=0

squares procedure, there is no assurance of the relative size of this error.

Thus, we need to be able to determine an approximating function in such a

fashion that the error, in the sense of least squares, will not exceed a

given tolerance. Before doing this, notice that

n N

E = Z [x(Bi)-Z Aj_j(_i)]_= IIT-Ao_o-...-_-_llS
i=o j=o

N N

:II_- z -- - IIS : II_IP- [_,z ---
J=O (X, ej)ej j=0 (X, ej)ej]

N N

-[_, z (X,ej)ej]+ IIZ IPJ=0 J:0 (X, ej)ej

N

--II_ II_ - z (_,_j)_.
j=O

From this we note the following points:

1. II_ II2 is an_pperboundofE.

2. A s_n of any k of the N + 1 terms (X_ej) m, 0 < k < N, will yield an

error E _ > E.

3. If eN+ 1 is any other non-zero vector orthonormal to each of
N+l

eO, el,... ,e_ then II_ IIS - z (X,ej)S< E.
J--0

27
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Thus s we may define the problem stated above as follows:

N

Problem: After evaluating II_ 112 - Z (X,ej) s, we find that this
J=O

value still exceeds a given error tolerance 6. Then we need

to find _N+l such that

N

li _ II_ - z (_,Tj):_- (_,,eN+l)S ! 6; or
J=O

N

J=0

where e--N+1 is the vector associated with _N+l that is orthonormal

to eOsel,...se N.

Solution: Let_+ 1 = (kO, klS...Skn). Then

N

T_+1 = _+__- _ (T_+l,'_j)_j
J=O

N n

(kO, kl,...,k n) - Z (Z _ieji)ej,
J=O i=O

where _j

Then

eN+ 1 =

= (ejo, ejl ..... ejn), 0_< j _< N.

N n

(kO, kl,...,kn)- _ (Z kieji)e j
j=O i=O

n s - Z (EN n kleji)s}i/2{Z kl
i=O J=O i=o

28
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and if X = (to, tl,...,tn) , then

(X, e--N+l)2 =

n N n

[ Z _iti - E ( E kieji)(X, ej)] _
i=0 j=0 i=o

n N n

2 _ieji)2
i=O J=O i=o

N

Thus, to have (X,e--N+l)2 > II_ Jl2 - Z (X, ej) s - 6,
j=O

we must have

n N n

[ Z kit i - E ( Z kieji)(X,e-j)]s >
i=0 j=O i=o

n N n N

- Z ( Z kleji)2] [ li_ li2 " Z - 6], or,[z hi
i=O j=O i=O J=O (X' eJ)s

equivalently, we must have

n

Z [ k_ (t i - (X,e--o)eoi ..... (X.e'-N)eNi}2
i=O

N

+ ( II _ IP - _, (X',e'-j) 2 - 6} {_i + "'" + _Oi - i}]
J:O
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n

+ 9A i [k=_O _k{ti - (_,_0)e0i .... - (X, eN)eNi}{t k - (X, eo)e0k-

k>i

.... (_,e-_)e_}

N n

+(ll_il _ z -- 6}(z +
J=0 (X, ej)S - k=O _keoieok

k>i

°.. q-

n

Z kkeNieNk]] _> O.
k=O

k>i

We can write this as

n

Z (Aik _. + Bik i) > O,
i=O

where

A i = [{t i - (i, eo)eoi .... - (X, eN)eNi ]_

and

B i

N

+ ( II _ II_ - z
J=O

- i}](x,_j)_- 8}[e_i+ ... + eoi

n

2[ Z &k (ti- (X'eo)eoi ..... (X'eN)eNi](tk- (X'-_e--o)eok
k=O

k>i

..... (_,eN)eNQ

SO
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w

N n

+ [ II_ IIs " Z (X"_e--_)s " 5][ Z kkeOieOk +
j=O k=O

k>i

n

•.. + Z kkeNieNk ]] •
k=0

k>i

The inequality

n

Z (Ai_ i + Bik i) > 0 is satisfied if Aiki + Bik i _> O,
i=O

for i = O_l,...,n.

Case l: Ai _> 0, for some i, 0 < i < n. Asstm_e An < 0, Ah. 1 < 0, ..

.., Ai+ 1 < 0 and A i > 0. Then we need to solve

_2
(i) Ai_ _ + Bik i + (Ank_ + An_l&__ 1 + Bn_ikn_ 1 + An_ 2 n-2

+ Bn_2Xn_2 + ... + Ai+lk_+ 1 + Bi+lii+l) _ O.

Thus_ we must have

_i - 4AiAng_ - 4AiAn-lk_-i - 4AiBn-l_n-i - 4AiAn-2_n'2

_ 4AiBn.2&n_ 2 ..... 4AiAi+l_i+l - 4AiBi+lli+ 1 _> 0.

Then choose kn arbitrarily and _n-l' &n-2' "'' ' &i+l as

sign Aj : -(sign Bj), i+l < j _< n-i.

In addition, choose Ai to be any solution of (1) and k k

to be any solution of _ + _gk : _k(_&k + Bk) _ 0,

follows:

k = 0,1,...,i-1.

Si
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Case 2:
If A i < 0 for all i, choose _n = 1 and examine

(1)_n-1-4AAn-l"

If (1) is greater than or equal to zero, we are assured

of a solution to the equation

(2) %-_x_-i÷Bn-lXn-1÷ An_= O.
B

solution of (2) and let _j = - J

Aj

If (i) is negative choose k
n

(3) _-2 - 4%-1%-2"

If (3) iS positive or zero 3 then

Then let in-1 be either

, j = 0,1,...,n-2.

= 0, and let In-1 = 1 and examine

An-21_-2 + Bn-2in-2 + _-3_ n-i 0 has a solution.

B

Let _n-2 be either of these and let kj = - --_ ,

5
J = O,l,...,n-3, etc.

It i -

In order for A i > 0 for some i; we must have

N N

Z (X--_e--j)eji]2 + [ II _ II= z (_,5) = - 8]
J=0 J=0

N

[( Z ejiS) - 1]
J=O

> 03 or
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[ II _ II_

[ II _ II_

this as

8>E +

N
m

- z 6] [l
J:O (X'ej)S -

N

z (_,_j)=- 6]<
J=O

1

N

j=O (X'ej)2

N

[t i Z (X, ej) eji]s
J=O

N

e 2
Z ji - 1

J=O

N

Z ejiS] < It i
j=O

N

It± z (7,-
J=0 ej)eji]_

N

- T. (X1_.)ejl]s,J or
j=0

N

j=O ejl

N

[t i - Z

J=0

m

(X, ej ) ejl]_'

N

e ._
Z jl - 1

j=O

But we may write

I or

m

In the newly computed vector _N+I = (kO, k I, ...,kn) let L i

be the value of some function _N+I(B ) at Bi , i.e., _N+I(Bi)= Li" Then

n N

= z [x(B_) - z A#pj(_i)
i:o j=o

- _+l%+Z(B±)] _ < 6.

Problem:
Determine _N+I(B' ) for some value B' _ Gi' 0 < i < n, such that

N+l

the error obtained by using Z Aj_j(B') to approximate X(B' )
j=0

in the sense of least squares, does not exceed the error obtained
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N

by approximating X(_') with Z Aj_j(B' ).
j=0

Solution: Compute _+l(k), k = -1,0,1, ...,N, eN+1 and _+l as follows:

A_+l(-1)
N

ll_+l - _ (n ,_)e II_+z j J
j=o

A_+l(0)= h+1(-1)%(-n(_+i'_o)

N-1

AN+I(N) = AN+I(-I)AN(-I) (¢PN+l,%) Z AN+I(J)AN(J)
j=0

N

eN+l : AN+I(-1) _N+I - Z AN+I(Jle j.
J=0

A_+I = (iT_+l)"

Finally, compute the (N+2)Aj's, J = 0,i,...,N+I, as follows:

_+i = _+IA_+l('l)

AN_1 = AN_I(-1){A_.1 - Ab_N(_-n+ A_+I[-A_+I(N-n

+ AN+I(N)AN(_-I)]}
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MULTIVARIATE FUNCTIONAL MODELS

Now let Bi , be a B i such that IIB i,

Define the followi_ function

N

Z Aj_pj(B') + AN+IM(B' ),
J=O

8' II =an Cllsi
O<i<n

8, II].

where

M(8,) = ki, IL(Bi') - 2 I'Bi ' - 8' II ]

L(B i, )

for 2 11 8 i, - 8' II < L(8 i,)

= O, otherwise,

and L(8i, ) = rain { II 8 i - B i, II }"

O<i<n

i_i'

Thus, when G' is chosen, we are able to use the function above to

approximate X(B'), being assured that the approximation obtained here is

N

no worse than the value Z AS_j(B' ) obtained by using the initial least
J=0

squares approximating function.

Writing this multiple of k i as

1 - 8'L(_ i,) - II B i, II

3

1 L(Bi ')2

we see that we have a factor which varies from zero to one as B' varies

from a position on the boundary to a position at the center of the ball
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1

Thus, the factor ki3 which was derived in association with the vector _i'

is weighted depending on the nearness of G' to Gi'"

Achieser, N. I., _ of Approximation, Ungar Publishing
Company, New York, 19_0.--

Approximation of Functions, Symposi_nheld at General Motors

Research Laboratories, Elsevier Publishing Company, 196_,

edited by Henry L. Garabedian.

O__nApproximatlonTheorz, Proceedings of the conference held
in the Mathematical Research Institute at 0berwolfach, Black

Forest, 1963, Birkhauser Verlag, 1964.

On N_nerical Approximation, Proceedings of a Symposi_n conducted

by the Mathematics Research Center, United States Army, at the
University of Wisconsin, Madison, 195_, edited by Rodolph E.

Langer.
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A General

in the

Solution for Minimum Impulse Transfers

Near Vicinity of a Circular Orbit*

by 1". N. Edelbeum

Analytical Mechanics Associates, Inc.
Cambridge, Massachusetts

ABSTRACT

N67"?..9373
An analytic solution is obtained for minimum impulse transfer between

two neighboring low-eccentricity orbits. The orientations of the arguments of

perigee and the line of nodes are completely arbitrary. The solutions obtained

are of three different classes. The first class consists of two-impulse nodal

transfers with both impulses occurring on the line of nodes and having equal

but opposite radial, circumferential and normal direction cosines for the im-

pulses. The second class also consists of two-impulse solutions but with equal

circumferential direction cosines, and equal and opposite radial and normal

direction cosines. The location of the two impulses for this class is a function

of the particular transfer. The third class consists of singular solutions with

a well-defined thrust direction at every point but with an infinite number of

solutions for the distribution of impulses (or even continuous finite thrusts) all

having the same fuel consumption. The singular solution can be realized with

two impulses so that two impulses suffice for all of these optimum transfers.

_Performed under contract NAS 12-26.
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NOMENCLATURE

a

a
o

C

e

e
x

e
Y

H

i

i
x

i
Y

K

%
P

R

S

T

u

x.
1

8

X

Xi

n

Semi-major axis

Semi-major axis of circular reference orbit

Cos (e - 80)

Eccentricity

x component of eccentricity

y component of eccentricity

Variational Hamiltonian

Inclination of orbit planes

x component of inclination

y component of inclination

Gravitational constant

Direction cosine of the thrust normal to the orbit plane

Radial direction cosine of the thrust

Circumferential dire'ction cosine of the thrust

Magnitude of the primer vector

Defined by Eq. (50 I

Sin (8 - 8o)

Defined by Eq. (61)

Time integral of thrust acceleration

Defined by Eqs. (1)-(5)

Defined by Eq. (31)

Central angle

Radial component of the primer vector

Lagrange multipliers

Circumferential component of the primer vector

Normal component of the primer vector

Defined by Eq. (60)

Defined by Eq. (60)
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INTRODUCTION

The theory of optimal space vehicle guidance has much in common with

classical applied mechanics and celestial mechanics. As might be expected,

many of the techniques of these classical disciplines have been applied to prob-

lems of optimal space vehicle guidance. Such techniques include Taylor series

expansions, linear perturbation theory, higher order perturbation theory, matched

asymptotic expansions, the method of averaging, and Hamilton-Jacobi theory.

Many of these techniques have been quite successful for some problems. How-

ever, optimal guidance problems introduce some special difficulties that are

not present in typical problems of celestial mechanics.

One of the usual procedures for transforming an optimal guidance prob-

lem into a problem in Hamiltonian mechanics is to use the maximum principle,

or its classical equivalents, to express the control in terms of the adjoint.

The control is often a highly nonlinear function of the adjoint so that small

changes in the adjoint may cause large changes in the control. This simple

fact can cause many of the methods which are successful for problems in celes-

tial mechanics to break down when applied to problems in optimal guidance.

This simple fact can even cause trouble with perturbation methods spe-

cifically developed for optimal guidance, such as the method of "neighboring

optimal" or "second variation" guidance. This guidance method linearizes the

state, the adjoint and the control, and can cause difficulty towards the terminal

point where small changes in the state may require large nonlinear changes in

the control. The same difficulty can occur with higher order schemes, such

th
as n variation guidance, because the expansion of the solution in variations

of various orders may not converge.
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One method of studying this terminal accuracy problem is to linearize

the problem about the final state. The resulting trajectory optimization and

optimal guidance problems may then sometimes be solved analytically. For

power-limited rockets, the control is a linear function of the adjoint and the

above difficulties do not arise. Minimum-fuel power-limited solutions have

been obtained for three-dimensional linearizations about circular orbits (Ref.

1) and elliptic orbits (Ref. 2). These solutions are for rendezvous in a fixed

tittle.

For rockets with constant exhaust velocity, the control is a nonlinear

function of the adjoint and the problem is far more difficult. Even if no bounds

are placed on the control magnitude (so that impulses are allowed} and the

transfer time and terminal positions are left open, only limited (but significant}

success has been achieved. The coplanar problem for elliptic terminal orbits

has been partially solved in Refs. 3 and 4. A more complete solution has been

obtained for three-dimensional transfers in the vicinity of a circular orbit

(Refs. 4 and 5). The present paper contains additional details on the solution

of Ref. 4, including the synthesis of the optimal control and the determination

of the minimum number of impulses required for the singular case. Ref. 5

represents an independent derivation of the results contained herein and in

Ref. 4. It includes some consideration of the effects of a slightly eccentric

reference orbit.

For a more complete review of the existing literature on optimal orbital

transfer, the two survey papers prepared under this contract should be con-

sulted (Refs. 6 and 7).
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ANALYS_S

The solution of this problem is conveniently carried out in terms of

Lagrange's planetary variables. By linearizing the variation of parameter

equations about a circular reference orbit, the equations of motion (1)-(5) are

obtained.

du du - 2 L T

dx 2 de _--du = "idu = (2 LT sin 0 - LR cos 0)

dx 3 de x
-- = --
du du (2LT cos 0 + L R sin 0)

= _u = _N sin 0

dXSdu -_udi= x
= 4 N cos O

Following Contensou (Ref. 8) and Breakwell (Ref. 9), the independent variable

is taken as the time integral of the thrust acceleration. If the thrust is impul-

sive, this integral is equal to the sum of the absolute magnitudes of the impulses.

The variable 0 is the angular position in the reference orbit measured from

the x axis. Both eccentricity and inclination are treated as vectors having

components along the x and y axes which lie in the plane of the reference

orbit. The 4 's are the direction cosines of the thrust in the radial, circum-

ferential and normal directions.

(i)

(2)

(3)

(4)

(5)
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The variational problem is formulated in terms of the Hamiltonian de-

fined by Eq. (6).

5 dx.

i=l

Following Lawden (Ref. 10), we shall introduce a primer vector which is the

adjoint of the velocity vector. The magnitude of this vector will be denoted by

p, and its components in the radial, circumferential and normal directions will

be denoted by X, bL and y, respectively. The following equations for the op-

timum thrust direction are derived by means of the maximum principle.

_R = _
P _'T p _'N p

(-X 2cos 8 + ;k3 sin 8)

(2),1+ 2X2 sin 8 + 2),3 cos e)

(_'4sin o + k 5 cos o)

The location of the impulse is given by the value of O where p takes

on its absolute maximum. If there is to be more than one impulse, all of these

maxima must be equal in magnitude.

Following Lawden (Ref. 10), Eqs. (8)-(10) will be rewritten in a dif-

ferent form.

x : +)`3 sin(e-s o)

(6)

(_

(8)

(9)

(10)

(Ii)
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I._ = 2 k I + 2 + k 3 cos (e- 0o) (12)

3

k3 )'4 - )'2 )'5 k2 )'4 + )'3 k5 [

sin (e- eO)+ " '2/-_----_2 COS(e- e°)l (13)J 2 2 2 2k 2 + k 3

k 2
tan 0 =

o k 3
(14)

Equations (11)-(13) are the equations of an ellipse in three-space. This

ellipse is formed by the intersection of a two-to-one elliptic cylinder parallel

to the v axis and a plane which passes through the intersection of the cylinder

axis with the k, _t plane. A typical case is illustrated in Fig. 1 which also

shows the projection of the ellipse on the X, _t plane.

There are only three configurations of this elliptical primer locus which

allow the primer vector to have more than one maximum. The first configura-

tion is a family of solutions where the center of the ellipse is located at the

origin (Fig. 2). In this case the two equal maxima occur on the major axis of

the ellipse and are separated by 180 ° . The following equations characterize

this case, which will be referred to as the nodal case.

k 1 = 0 (15)

02 = O1 + (16)

x(e1) = _ x(e2)

w(o1) = - _(o_)

p (01) = - ly(02)

(17)

43



TRAJECTORYANALYSISAND GUIDANCETHEORY

The second configuration, which allows two equal maxima of the primer vector,

corresponds to cases where the ellipse passes through the # axis and the

primer vectors again lie in a single plane (Fig. 3). This case, which will be

referred to as the nondegenerate case, is characterized by the following equa-

tions and inequalities

k2X4 = -k3)'5

8 2 - e° = e ° - e I

k(01) = _ k(02) ]

_(e1) = _(e2)

V(el) = ~ _(e2)

4 x2+ )
DOS (81- 8o) = 2 2 2 2

()_3X4-X2X5) - 3(X 2 +),3 )

2 2 2 2

3(X2+ X 3) < (X3X 4- X2X 5)

/ 2f---_-_3 2 2 2 2

4Xl/_] X2+ k 3 ) _ (X3X 4- X2X 5) -3(k 2 + k 3)

(18)

(19)

(20)

(21)

(22)

(23)

The third configuration is a combination of the two previous cases where

the primer locus forms a circle and the primer vector has the same magnitude

at all points on the orbit (Fig. 4). This singular case is characterized by the

following equations where the magnitude of p has been taken to be unity.
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It )`i = 0 (24)

)'2k4 = - k3k5

2 2 2

3(k 2 + k 3)

2
3 K

(X3X4-)'2k5) = 4 a-
s

(25)

(26)

1
)' = _sm(e- eo) (27)

= cos (e - eo)

v = --_ sin(e-e o)

(28)

(29)

The above results for the equal maxima of the primer vector were first

obtained by purely geometrical reasoning. They have been analytically verified

by M. Washington in Ref. 4.

The admissible adjoint solutions have now been determined. The next

problem is the solution of the two-point boundary value problem to determine

the optimum transfers corresponding to each adjoint solution. The simplest

case is that of nodal transfer. The x axis may be aligned with the line of nodes

between the initial and final orbits. Both impulses must occur on this line of

nodes because of the 180 ° central angle separating the impulse locations.

The total change in the orbital elements is given by Eqs. (39)-(36) using Eq. (17).

u -= Ul+U 2 (30)

u 2

u
(31)
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Ax z Aa/a o _-- - 2 ,_ (1-20)
u u T_

A x 2 A ey _o

u u - _'K _R 1

Ax3 Aex _o

- 2 d_ _T1U u

A x4
- 0

U

Ax 5 70Ai
- = ,--

u u _N 1_ K

These equations may be solved simultaneously to determine the total required

impulse [Eq. (37)1 and the magnitude of the first impulse EEq. (38)1.

u
+--_ + Aey

o

u I - 2A e Ai +'-"_ + Aey
x O

There are two bounds on the region of applicability of this solution. The first

is given by the requirement that each impulse must point in the positive direc-

tion of the primer vector.

_; Ae x
0
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The second inequality is given by the requirement that the primer vector must

have a maximum at the impulse locations.

2 2

Ai _ 3Ae
Y

(40)

The optimal directions of the impulses must still be determined. An

instructive way to do this is to differentiate the payoff with respect to the state.

If the maximum magnitude of the primer vector (which is equal to the magnitude

of the Hamiltonian) is taken as unity, the Lagrange multiplier for each compo-

nent of the state is the partial derivative of the payoff with respect to that com-

ponent of the state.

kI = 0

X 2 =

k 3 =

>'4 =

0

_e

Y

i + "-_-- + Aey

0

_e
x

2 24 + Aex +As
4 y

o

Ae x Aey

A AexZ+ 2
Ai x i + 4 Aey

(41)

(42)

(43)

(44)

)'5
o

hi

Ai 4 +Aey

(45)
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The direction cosines of the impulses are given by the components of

the primer vector at the impulses.

- Aey

k I =

Ai +--+Ae
4 y

Ae
x

/ 22 A e x 2
2 Ai +--+Ae

4 y

Ai

Yl

J 2+Ae: 2
Ai 4 +Aey

(46)

(47)

(48)

The solution of the two-point boundary value problem for the nondegenerate

case is more complicated and involves considerable algebra. It is convenient to

use a different normalization of the Lagrange multipliers. This normalization

will be retained only to Eq. (67), where the conventional normalization with the

primer vector equal to unity will be reintroduced.

X3)'4- k2k5 1

_'2 + X3

(49)

R _- +X 3 (50)
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1

c -=-cos (O-Oo)

Js =- sin(e-O o)

With these definitions, the direction cosines of the thrust at the impulse loca-

tions may be written:

&R = _- = 2R2S

P

(5i)

(52)

_T = p =

_I+R 2 C

4R2+ (I-3R 2) C 2

(53)

2RS

Jl +R 2 J4R2+(1-3R 2) C 2

(54)

The Lagrange multiplier X 1 has been eliminated from these equations by use

of Eq. (21). The total change in each element of the orbit can now be given by

Eqs. (55)-(59).

j- 2C 1 +R 2

u 4R2+ (1_3R2) C 2
(55)

Ax2 2( C 2 + R 2)

u jI+R 2 j4R2+ (l_aR2) C2
(56)

49



TRAJECTORYANALYSISAND GUIDANCETHEORY

Ax3 2cs(i-25)

u _+R2 j4R2+ (1_3_2)C2

Ax 4 2RS 2
-- =

U

_I+R 2 /4R2+ (1-3R2)C 2

(5'7)

(58)

Ax 5 2RCS(1-28)

JI+R 2 /4R2+ (1-3R2) C 2

(59)

The x axis has been aligned with 0 for these equations. This orientation
O

will also be abandoned after Eq. (67), when the orientation along the line of

nodes will be reintroduced.

The two-point boundary value problem will now be solved in terms of

the angle between the vectors describing the eccentricity change and the inclina-

tion change. The following two angles are first introduced.

Ax 2 Ax 4

tan_ -= -- tan_ =- Ax_Ax 3 5
(60)

The variable T defined in Eq. (61) can be determined from Eqs. (56)-(59).

T -: tan(_-_) = (1-25)2C2S-(C2+R2)S

(1-25)(1+R2) C

(61)

Eq. (61) can now be solved for the impulse split in terms of T.

1-25 = T'(I+R2) -/T2(l+R2) +4S2(C2+R2)

2SC
(62)
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The total change in eccentricity and inclination can now be calculated in terms

of C, R, S, and T.

;4
u u

= J4(C2+R 2) + 2T2(l+R 2) - 2T JT2(l+R2_2+4S2(R2+ C 2)

4R2(I-3R 2) C 2

(63)

2 2
Ai Ax4 Ax5

u 2 2
u u

/
= R/4S2 +2T2(1+R 2) - 2TJT2(I+R2) 2+4S2(R 2+c 2)

4R2(1-3R 2) C 2
(64)

By multiplying Eq. (63) by R and dividing it by Eq. (55), and dividing Eq. (64)

by Eq. (55), and subtracting the squares of these two quantities, the following

result may be obtained.

C2=

R2(l_R2) _ a2
2

a
o

2 22R 2 _ -(I+R2)(R2_e - Ai )

a
o

(65)

This equation allows C and S to be eliminated from the previous equations

and allows R to be determined in terms of the changes in the orbital elements.
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i
R 2= 1+_

-2-+ _i 2- Ae 2

_o

Ai Ae sin (_ - _)

L Ai Ae sin (_ - _)J

(66)

The payoff now can be calculated in terms of the orbital elements.

- 2a---_ + Ai 2_ _e2+ ---_/
o a

o

(67)

At this point the orientation of the x axis along the line of nodes and the nor-

malization of the Lag-range multipliers with p =1, used in the rest of this re-

port, are reintroduced. The equation for the total required impulse now be-

comes Eq. (68).

2_Kao 1 2+'e2-Aa-_2 +/I i2_Ae2__e2+ _a2¢+4Ai2Ae2u = , Ai2+_ex y 2a 2 A x y z / y
O a

o

(68)

The Lagrange multipliers are now most easily obtained by differentiating the

payoff, as was done for the nodal case.

Ai 2-_e2-Ae2+ Aa 2

x y 2
a

XI = KZ___._a _1 + o

2 __ 2
+ + 4 Ai2_e

o _i 2- Z_e - _Y a Y

O

(69)
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1 -

2 2 Aa 2
-Ai2-Ae -Ae +_

x y 2
a

o

IAi - Ae 2 - Ae 2 + Aa 2 ._2y "--_) +4Ai2Ae 2
a Y
O

(7O)

k 3 -

KAe
X

23.u
o

1 -

2 2 Aa 2

Ai 2 Ae x - _ey 2
a

o

l 2 2 2 2 2 2
_i2-_e-Ae +-_) +4Ai Ae

x y y
3.

O

(71)

_4 = -

K Aey

23.u
O

Ai 2 - Ae x - Ae +

2
+4 &i2Ae

Y
a

o

(72)

k5 = KAi23.u
O

1 +

2 2 _ a 2
Ai 2-Ae +Ae +--

x y 2
a

o

_i 2 - /_e x - £_ey + + 4 Ai 2 _,e
a Y

O

(73)

The orientation of the primer locus relative to the line of nodes can be found by

use of Eq. (14). The location of the impulses can be found from Eq. (21) and

the direction of the impulses from Eqs. (8)-(10). The impulse split between

the two impulses can be found from Eq. (62) or from one of the boundary con-

ditions.
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The payoff for the singular case is independent of the semi-major axis,

as it is for the nodal case, because the partial derivative of the payoff with re-

spect to the semi-major axis, )'i' is equal to zero. The required value of

change in the semi-major axis is easily determined by setting _1 equal to zero

in the nondegenerate solution for _1' Eq. (69).

Aa2 = Ae2+Ae2+_2 AiAe _Ai 2

x y _ y

For changes in the semi-major axis smaller than those given by Eq. (74), the

solution will be singular (or nodal) and will have the same payoff as the nonde-

generate solution with the semi-major axis given by Eq. (74).

u = _f3 Ai+Aey

The orientation of the singular locus may also be found as a special case of the

nondegenerate case.

&ey+ J7 _i
tan 0° - Ae

x

The optimum thrust directions are given by Eqs. (27)-(29).

In this singular case, the solution space collapses from five-dimensional

to three-dimensional and may be visualized in three-space. The simplest way to

show this is to once again align the x axis with the 6° direction of the primer

locus. The rates of change of the elements are then given by Eqs. (77)-(81).

dx 1
-- = 2C
du

(74)

(75)

(76)

(77)
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_2 _SC

dx___3= 3 s 2
du 2 -

dx5 _ SC
du 2

Itis seen that x 2 is linearly dependent on x 5 and that x3 is linearly

dependent on x 4. Figure 5 is a plot of Eqs. (77), (80) and (81) showing the

possible changes in the elements as a function of the position of the impulse.

If only one impulse is allowed, the reachable states lie on the line of intersec-

tion of a circular cylinder and a parabolic cylinder which form the convex hull

of the intersection. It is possible to reach points on the convex hull by using

two impulses (see e.g. Ref. 8). The interesting question is whether points in

the interior of the volume can also be reached with two impulses. Ifthey can,

then all minimum impulse transfers between orbits in the near vicinity of a

circular orbit can be realized with only two impulses.

A proof that every interior point of the convex hull is reachable with

two impulses has been suggested by W. D. Hayes and S. H. Lain of Princeton

University. The geometric interpretation is that a straight line which touches

the space curve at two points can be passed through every interior point of the

volume. The proof is constructed by drawing a unit sphere about an arbitrary

interior point and projecting the space curve onto the sphere. The antipodal

curve to this curve on the sphere is also drawn. The geometry of the problem

is such that the curve and its antipodal curve will always intersect. As the

(78)

(79)

(80)

(8].)
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intersection is sufficient for a straight line which touches the curve at two points

to pass through the center of the sphere, two-impulse solutions are always pos-

sible. Even these two-impulse solutions are not unique, as there are usually at

least two intersections of the two projected curves. J

The explicit calculation of the two-impulse solutions is difficult and has

not been accomplished. However, three-impulse solutions are easily calculated

explicitly. For example, the same value of sin2(8 - %) may be used for each

impulse and the impulse splits adjusted to meet the other boundary conditions.

Because these solutions are singular, they are also realizable with finite

thrusts. Any transfer with the optimum thrust directions that meets the boundary

conditions will realize the minimum fuel consumption.

The type of solution corresponding to any particular transfer can be found

from the following diagram.

Aa 2

2
a
o

_A2_ 3Ae 2 'b

Aa 2 : _b _ _e,
__ ndegenerate

./ --
o _o a_ 2 2

a2 _ Aex ( /_// _a2 _ Aex

A a _ 2 2 2 .
_ Ae;+ ;Xey+_-'_eyA1- Ai 2

2 2 2
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RESULTS

The total impulse required for any transfer as well as the transfer re-

gions are illustrated in Figs. 6-11. In each figure, the contours are of constant

values of Ai/u going from zero at the outer boundary to unity at the origin in

increments of 0.05. Each figure is drawn for a different value of the angle be-

tween the eccentricity change vector and the inclination change vector. Figure

6 corresponds to co-axial transfers where the solution is known to consist of

inclined Hohmaun transfers. There is no singular solution in this case. One

set of Hohmann transfers is a special case of the nodal transfers while the other

is a special case of the nondegenerate transfers. This becomes clearer in Fig.

7 where the singular solution appears near the outer boundary of the figure. The

nodal case is the triangular region adjoining the singular region. The nonde-

generate case occupies the rest of the figure.

As the angle between the eccentricity change and the inclination change

increases, the nodal region rapidly decreases in size while the singular region

grows. Finally, in Fig. 11 the nodal region has completely disappeared.
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SUGGESTIONS FOR FURTHER RESEARCH

The solutions obtained herein are quite general and contain a number of

new results. They naturally suggest a number of possibilities for further re-

search, particularly for nonlinear transfers. The following paragraphs will

briefly describe some of these research areas.

1. The existence of more general nodal transfers than the Hohmann

transfer in this problem suggests a general investigation of nodal

transfers.

2. The singular solution obtained herein may be the limit point of a

nonlinear singular solution like the Lawden spiral. Unlike the

Lawden spiral, half of this curve satisfies the necessary condi-

tion derived by Kelley, Kopp and Moyer (Ref. 11) and by Rob-

bins (Ref. 12).

3° Either or both of the infinitesimal impulses of the present solu-

tions may be allowed to become finite. The resulting nonlinear

transfers may be investigated by the methods of Moyer (Ref. 13)

or Winn (Ref. 14).

4. The consideration of higher order terms will remove the de-

generacy of the singular solution and will introduce three-impulse

solutions (if not even more complex ones). The next step is the

consideration of quadratic terms.

5. The terminal guidance problem can be considered since the sen-

sitivity of the transfer to various errors can be analytically de-

termined. Finite thrust guidance might be approached as Rob-

bins does in Ref. 15.
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PRIMER LOCUS DIAGRAM

Figure 1
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Figure 2
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Rejection to Infinity in the Problem of Three

Bodies When the Total Energy Is Negative*

by D. C. Lewis

Control Research Associates

Baltimore, Maryland

1. Introduction

In the problem of three bodies, we take the kinetic energy

relative to the center of mass of the three bodies and we take the

zero level of potential energy as occurring when the three bodies are

infinitely far from each other. This makes the potential energy always

negative for any actual configuration, and the total energy must then

be _egative also provided that the velocities of the three bodies relative

to the mass-center are sufficiently small for the given configuration.

In this context we consider motions for which the total energy has a

preassigned negative value - K(K • O) and for which the longth of the

angular momentum vector (taken relative to the mass center) also has

a preassigned value f • O.

.67-29 74

*Performed under contract NAS 12-93.
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A useful quantity for measuring tile dispersion of the three

bodies is the so-called Lagrangian inertial radius R relative to tile

mass center. Its definition will be deferred to tile next section. We

merely note here that R becomes infinitely large if and only if the

perimeter of the triangle formed by the three masses becomes infinitely

large, and P, is small if and only if the perimeter is small.

G. D. Birkhoff has shown that if R is at any time t o less

than a sufficiently small positive quantity RO, then one of tile three

bodies will recede infinitely far from the other two as (t - to)* ®,

while the distance between the latter two will remain bounded.

It is clear frma his work that R 0 depends on the three masses

mo, ml, m 2 as well as ell the assigned values of K and f, so that

R 0 = Ro(K , f, m O, m I, m 2) .

But he did not give an explicit estimate of R O. Tile inain purpose of this

paper is to calculate such an estimate. Tile final result is formulated

l_ith some precision in Theorem i0.

;4e also wish to clear up some obscurities, if not actual errors,

in Birkhoff's treatment. For instance, Birki,off never proved the statement

about upward concavity of the part of the curve R = R(t) for which

R < f/(2 I/2 K I/2), of. i{eference [i] p. 278, £. I. Ile only proved that

the second derivative was positive at points where the curve was horizontal.

For such reasons we have discussed this theorem in much greater detail

than was done by Birkhoff. Our version of this part of his work appears

as Theorem 3.
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We },ave ignored the possibility of collisions in this paper.

Since f > 0, the case o£ a simultaneous collision of all three bodies

.'is ruled out by the conjecture of Weierstrass, which was rigorously

proved by Sundman. _,e remaining difficulties afforded by the possible

occurrences of binary collisions are readily eliminated with the help

of a regularizing parametrization due also to Sundman.

2, Notational Prelude.

The nine second order differential equations for the three

body problem may be written in the form of three vector equations

d2qi _U

(2.1) m i _= _ , i = O, I, 2 ,
dt 2 _qi

where qi is the vector wit}, components xi' Yi' zi" The mass m i

is thus regarded as having rectangular coordinates xi' Yi' zi in an

inertial frame of reference. The (scalar) force function is

mlm 2 m2m 0 mom l
U = ..=..- + =_._ ÷ _

r 0 r I r 2

where r i is the distance between the nlasses

is a permutation of (0, I, 2), and r i • lqj

mj and mk. llere (i, j, k) l

- qk[ = [(xj-xk)2.(yj-yk)2÷(zj-Zk)2]T •

The equations (2.1) are well known to admit a total of ten

elementary first integrals, the first six of which express the conservation

of linear momentum and permit us to use a frame of reference whose origin

is at the center of gravity of the three bodies, l_e may thus _sume that

(2.2) moq 0 ÷ mlq I + m2q 2 E 0 .
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The energy integral is written in tile form

1 2
Z_h i I_il :V-K,
1

where the dot is used to denote differentiation with respect to t and

where the integration constant K is the _of the total energy.

The three integrals of angular momentum appear as a single

vector equation

E. mi(qi x qi ) - C .
l

The length of the vector c of total angular hOn_ntuh will be denoted

in tile sequel by f.

_e Lagrangian inertial radius R may be defined by the

equation

R 2
= Z h i Jqi 12 ,

i

but, if (2.2) is assumed, it is not hard to see that we also have

where

(2.3)

(2.4)

R 2 .-1. 2 2 2
= ,l tm0mlr 2 + mlh2r 0 ÷ h2h0rl) ,

hi, as in (2.12), is the sum of the masses.

Lagrange's well known identity is to the effect that

d2R 2

-- = 2(U - 2K)
dt 2

We refer to the following as Sundman's inequality

_2 + 2R R" + 2K >= f2 p-2
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which is well known. The auxiliary function of Sundman is defined by

the equation

(2.5) II= R _2 ÷ 2 KR + f2 R-I

Its derivative with respect to t is seen to be of the form F R, where

F = _2 ÷ 2R _ + 2K - f2 R-2 _ 0 because of (2.4). We thus note the

important fact that, on any interval for t on which R is monotonic,

II is also monotonic in the same sense.

The formulas thus far used have the advantage of being

symmetric in m0, ml, m 2 and q0' ql' q2' In other words they are

invariant under any permutation of the subscripts (0, I, 2). On the

other hand they have the disadvantage of not reflecting _%e full potentiality

of (2.2) for reducing the number of unknowns. One way of accomplishing

this is due to Lagrange, but a single reduction of this sort necessarily

sacrifices the desirable symmetry noted above. Consequently we contemplate

the whole class of such reductions in the following way.

Let (i, j, k) be mly permutation of (0, I, 2). Let the

vector q, with components (x, y, z), determine the position of the

mass mj relative to mi, so that

(2.6) q = qj " qi "

The center of gravity of m i and mj, relative to tile origin of the

original frame of reference, is evidently at the point corresponding to

the vector aiq i ÷ ajqj, where a i = mi(m i ÷ mj) -I and ej = mj(m i + mj)

-I
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We now use a vector s

of the third body mk

so that

(2.7) s = qk " _iqi " ajqj

Assuming that the origin of the original frame is at the center of

with con_onents (_, n, ¢) to determine the position

relative to the center of gravity of mi and mj,

gravity of a11 three bodies, so that miq i + mjqj * mkq k " 0, which is

simply another way of writing (2.2), we may easily find qi' qj' and

qk in terms of q and s. In fact we have

qi " " ajq - mR _I"I s

(2.8) qj . • _iq - mR H"I s

qk " (mi ÷ mj) H"I s

where H, as previously, denotes the sum Of the three masses.

If We set

m m Cmi ÷ mj)
(2.9) m ffi _ and t_ ffi 'm. +m. H

x j

it may be sho_ that the equations (2.13 are equivalent, with due regard

to (2.2), to the equations

_U _U

mq" _q , _'s"

The energy integral may be written in the form

(2.m) _ ÷ - u - K
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and the Lagrangian inertial radius R, previously introduced, satisfies

the equation

(2.11) R2 • m r 2 + _ 0 Z ,

where r- lql'/x 2oy2.=2 and 0- Isl "/_2. :._2.

Most of the above formulas, beginning with (2.5), depend

heavily upon the particular choice of the permutation (i, j, k) of

(0, I, 2). It will be essential to have upper and lower bounds for both

m and _ which are independent of this permutation, i_e will, in fact,

calculate such bounds in term of the following four symmetric £unctions

Of moJ ml. and m2,

M = m0 ÷ m I • m2

P = momlm 2

(:_. 12)
t

m - minimum oi _ the three masses .

m" = grea_er of the two smallest masses ,

From (2.9) we find that dm/dm i = m_(m i ÷ mj) "2 • O. ilence m is an

increasing function of mi when mj is held fixed. On the interval

mj _ mi < ÷ _ it takes on its minimum at m i - mj. at which point

½ +"m • mj > m ; and as m i ÷ - , m tends to its least upper bound

mj, and. since under present conditions mi _ mj, mj cannot exceed

the greater o£ the two smallest masses, which we denote by _. t_e

conclude therefore that
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1 *
(2.13) _-m <_m <

if m i _ mj. But, since m is symmetric in m i and mj (and so

m*are and _), we see that (2.13) holds also even if m. < m.. It
, 3

is seen from (2.9) and (2.12) that _ = P m "I H "I. Hence it follows

at once from (2.13), that

(2.14) _ < _T,

where

P
(2.15) _ = 2P_ and _ = --

m M mbl

3. Fundamental Results.

Theorem 1. In case K > O, the least of the three mutual distances,

roJ rl, r 2 can not exceed _12/(3K).

Proof. From the energy integral it is clear that

m0m I m0m 2 mlm 2 m0m I + m0m 2 + mlm 2
K < U =-- + -- + -- <

-- r 2 r I r0 = r

= m2 ) 2where r = min (r0, rl, r2). But _I2 (m 0 + m I +

1 2 2 1 2 2 1 2 2 2(m0ml + mom2 + mlm2 )= _-(m 0 ÷ m I) + _.-(m0 + m 2) + _m I + m 2) ÷

> 3(mom 1 + mom 2 + mlm2). Thus we have

moml + mom2 + mlm2 t,¢

K< <_--_ ,r

so that

N2
r < --

-- 3K

as desired.
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We continue throughout the rest o£ the paper to assume that

K • 0. Moreover, as in the proof of the next theorem, we shall always

use r to denote the least of the three mutual distances and we shall

use p to _enote the distance from the center of gravity of the two

mutually closest bodies to the third body. This notation is consistent

with tlle notation of (2.9) and (2.11), since we merely have to take m.
i

and m. as the two closest bodies.
)

Theorem 2. If

;,i2

R_>Tf

2 K-I
then p > _ H 2 .

Proof. Evidently, by (2.13) and (2.14),

M2

R_Tf m+/-6-WT-_.

Since R 2 m r 2 + 2= _ p , we have, from Theorem I,

2 1 R2 m r 2 > M 4 -- 5!__/_.4 --..... (m -" 4 _) m 4 _,I4

P _ _ -- 9 K2U _ 9 K 2 -- 9 K 2 '

so that

2 H 2

p>--

3 K

as stated.

In the sequel it is convenient to refer several times to the

following elementary lemmas. Although tliey are essentially well known,

it is more convenient to give the proofs here than to refer to the

pertinent literature.
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Ler,_a 1. Suppose that F(t) is differentiable for t > a and that

lim F(t) - b, where a and b are constants. Then there exists a
t_,_

sequence tl, t2, ... such that lira t - ® and lira F'(tn) = O.n

Proo..._. Assumin_ n • a, we may define in, by the mean value theorem,

to be such that n _ t n < n + i and P'(tn) = F(n + I) - F(n), and

the lemma follows at once since lim [F(n ÷ i) - l:(n)] = b - b = O.

Lemma 2. Let F(t, P) be a continuous real valued function o£ its two

real arguments t, P; and let it satisfy a local Lipschitz condition in

P for t o _ t and P > O. Let R(t) be a positive differentiable

function of t, define4 for t _ to, such that

(l) R'Ct),.F[t, R(t)]

Let Q(t) be positive and satisfy the differential equation

q,(t) - _[t, q(t)]

on the interval t o _ t _ t 1 and suppose also that Q(to) -- R(to). Then

q(t) , R(t) for t o_t_t 1.

Proo._f. Let t 2 be m_Z real number between t o and t 1. Then by the

existence and continuity t1_eorems for differential equations, we may define

a function P(t) - P(t, ¢) which satisfies the differential equation

(II) p,(t) - F[t, P(t)] + , ,

and the initial condition

P(to) - R(to) ,
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this definition being valid for t o _ t _ t2, at least, if

sufficiently small, depending perhaps on the choice of t 2.

_reover

(Ill) lim P(t, c) = Q(t)

on the interval t O _ t _ t 2 .

We first prove that• if ¢ is positive, then

(IV) P(t, c) > R(t) for t o < t _ t 2 .

I¢I is

t • such

is not

Suppose that this were not so. Then there would exist a point

that to < t* <_ t2• where the function w(t) = P(t, e) = R(t)

positive° Also, since W(to) = P(t0, ¢) - R(t0) = 0 and

(V) w*(t0) = P'(t0, ¢) - R'(to) _ [F(to• P(to)) ÷ c] - FCt0• R(to)) = ¢ > 0

there is a point t • to, but not as great as t , such that w(t) • 0

on the interval t o < t _ t . For otherwise we would have w(t} non-

positive at an infinite number of points in any neighbo_tood of to•

,e

necessitating w'(to) _ 0, contrary to (V). Thus, since w(t ) > 0

and w(t ) _ O, there is a non-empty set S o£ points on the interval

t,
t < t < t2 where w vm_ishes. Since w is continuous• S is closed.

Let _ - the greatest lower bound of S. Then to _ t <_t 2 and

w(_) • 0. That is,

(vl) P(_.¢) - R(t-3.

But w(t) • 0 for t O < t < _ . Since w is di£ferentiable at _, it
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follows that w'(t') _ 0, which contracts the fact, following from

(VI), that

w,CF) = P'CF,_) - n'C_)>_[_C_,_C_)) ÷ c] - FC_, RCt-3)= c > 0

This finishes the proof of CIV).

By letting E -_ 0 in CIV), we find from (IIl), that

QCt) _ R(t) for r 0 <= t < t 2. But, since t 2 is arbitral')" on the

open interval from t O to t I and since both Q(t) and R(t) are

continuous, the above inequality remains valid on the whole closed

interval from t 0 to tl, as we wished to prove.

Theorem 3. In case f > 0, K > 0, any connected part C of the curve

R = It(t), for which R < f(2K) "I/2' consists of an arc with a single

minimum. If R = R 0 at this minimum and if 0 is any number between

0 and I, tile curve rises on either side until R • 8 f2/(2K R0) with

slope R = (d R/dt) at least as great in absolute value as demanded by

the inequality

_2 R - R 0 f2

_ (_ - 2K)

at every intermediate stage. It is hereby implied that R 0 • 0 .

Proof. If "R(t) _ 0 and ACt) = O, the Sundman inequality, (2.4),

_2 + 2R [_ + 2K _ f2 R-2 shows that R(t) _f(2K) -1/2. We thus see

that, as long as we confine attention to C (for which R(t) < f(2D'l/2)

we must have R • 0 at all points where R = 0. This means in particular

that R cannot be a constant on C or any subarc of C. It also means
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that R can vanish at not more than one point of C. IYe proceed to

• ' show that such a point actually exists.

Otherwise, since _(t) is continuous and never zero, R(t)

would be strictly monotonic (in one sense or the other) on C_ and

hence the Sundman function

H = R _2 + 2K R * f2 R-I

must be monotonic in the same sense. This shows that R cannot decrease

monotonically to O for either increasin_ or decreasing t, tending to

either a finite or an infinite limit, for this would make H tend to

÷ ®, so that }i could not possibly be monotonic in the same sense as R.

Hence let R 0 • 0 be the greatest lower bound of R(t) on C. Then,

since R(t) is presently assumed to be strictly monotonic on C, we

must have either

(3.1)

or else

(3.1")

lim R(t) = R 0 • 0

lim R(t) = R 0 • 0 ,
t-_._o

and since the differential equations are invariant under change of sign

of t, it will be sufficient to confine attention to (3.1). We wish to

show that (3.1) leads to a contradiction. By Lemma 1 there is an infinite

sequence t I) t 2' ... tending to ®) such that _lim R(tn) = 0. llence,

from (2.5), we have i_ l|(tn) = 2K R 0 ÷ _ R0 I. But, since I! is monotonic

in the same sense as R and is never negative, we know that _ HOt) exists.
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It follows therefore that lira li(t) = 2K R0 + f2 ROI." _loreover

H(t) _ 2K R0 + f2 Re 1 for every finite t, since this corresponds to

the monotonic sense in which i! tends to its limit. From the definition

(2.5) of H(t), we find therefore that

R _2 ÷ 2K R + f2 R-1 _ 2K R0 * f2 R01

which is equivalent to

P,- R0 f2

(3.z) f_z".(_) (_. 2K) .

And, since R(t) is presently assumed to decrease monotonically to

as t _ _, we also have

(3.3) _(t)< o

on C.

t
inconsistant. To do this we take any fixed t

t •
(t , R(t )) on C and define a function Q(t)

equation,

Ro

_Ve wish to show that (3.1), (3.2), and (3.3) are mutually

corresponding to a point

by means of the differential

Q(t) - l{o]½ f2 1

(3.4) Q(t) _ - [ Q(t) [_'_)'" 2K]_

and the initial condition Q(t*) - R(t*). Such a definition can be effected

by tile usual existence theorems for differential equations at least for

some sufficiently short interval t* _ t < t**. It follows from (3.2),

(3.3), and (3.4) that 0 • QCt) _ RCt) whenever qCt) _ RCt) • R0, in

particular when t mt*. Hence by Immma 2 the two curves can never cross
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t

for t > t* and moreover we must have Q(t) > R(t) > RO. Since R(t)

is presently assumed to be defined for t* <. t < -, and since, from (_.4_,

_(t) < O, it is clear that lira Q(t) - Q say, must
t._t**

exist and must exceed R0. Furthermore Q < QCt*) = RCt ) < fC2K) "1/2 ,

t,
since (t** R(t*)) is on C. Thus R0 < Q < £(2K) "1/2, so that both

- _ and _/ROQ - 2K are positive when Q - Q**. It follows by

repeated application of the existence theorems for differential equations

that the definition of Q(t) can be extended over the whole infinite

o

interval t _t < -, and that over this whole interval it is monotonic

non-lncreasing and bounded from below by R O. Hence

(3.s) qo * lim q(t)

exists. We also see from Lena 1 that there exists an infinite sequence

o£ pointa tl, ¢2, ... tending to +-, such Chat lim _(tn) = 0 .
n-_e

But from (3.4) and (8.5) we know that lim _(t) exists (even when we do

not restrict ourselves to such a sequence). _e are thus justified in

writing

Q_ ._- R I f2 I

C3.6) lim QCt) " - [_Q__]T_- [Fo_ - _K]_ - o .

Since the point (t*, R(t*)) is on C and since both QO and R 0 do

not exceed R(t ), as follows from the monotonicity o£ Q(t) and R(t),

we have

"
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From this result and (3.61, it follows that

established for the function Q(t) that

(3.71 lim Q(t) : R 0

and that

(3.8) lim QCt) = 0 .

t-_o

that

(3.9)

QO = RO" We have thus

An elementary calculation based on (3.4), (3.7), and (3.8) shows

lit,, "q" (t) = 1 f2 I f2

R o

But from (3.81 and Le)_a 1 there exists a sequence of points tending to

® such that _(t) tends to 0. This contradicts (3.9), and hence we

have finally shown the inconsistency of (3.I), (3.21, and (3.3).

This finishes the proof of the fact that C contains just one

point (t0, R(to) ) where R takes on a minimum value R 0 = R(t0). It

has also been established that R 0 • 0.

R = R(t) must rise on either side of the

either indefinitely or tmtil it reaches

Evidently the curve

minimum point (t0, RO) on C

a relative maximum point (tl, Rl) ' where) of course, R(tll = 0,

_(tll _ 0, so that this point (tl, Ri) is beyond the upper bound for

points on C. Thus R 1 > f(2K) "I/2 • R 0. From the Sundman inequality,

H(R(t0), _(to) ) _ ll(R(tl)) R(tll I together with the fact that R(t01

and R(tl) are both zero) we find that

88



REJECTION TO INFINITY

f2 f2

(3.10) 2K R 0 • _-0 < 2K R 1 ÷ R-_ (R1 = R(tl)) "

2 RO f2 2 R1 f2 R1 • 0_lis can be written in the form 2K R 1 + R 0 - 2K R O =

or 2K R 1 R 0 (R 1 - R0) - f2(R 1 - RO) > O. Since (R 1 - P,O) • 0, we

find that 2K R 1 R 0 => f2. In other words R 1 > f2/2K R O. Thus, R

must rise to at least this value, if there is a relative maximum.

If there is no relative maximum and if R still does not

attain the value f2(2K RO)-I , it is clear that R(t) is monotonic and

bounded by f2(2K P,O) "I, so that it tends to a limit as t ÷ ± _. This

limit is greater than R 0 but not greater than f2(2K RO)-I. So we

may write

(3.11) R0 < lira R(t) = _< f2(2K go)'l
t-_

We hereby restrict attention to the case t -_ _, as we are entitled to

do because of the invariance of (2.1) under change of sign of t. Let

R 2 be an), number such that R 0 < R 2 < _, and let O be any number between

0 and 1; then set

1 1 1

(3.12) c = f (R 2 - lIo)_ (1 - 0) _ R 0 2"_-1

From (3.11) and Lerama 1 we can find

• O.

t 1 • t o such that 0 < R(tl) < e

and such that R 2 < II 1 < _T, where P'I = R(tl)" Using the Sundman

inequality as before we now get a slightly modified form. of (3.10), namely

t/1 e 2 + 2K R 1 + f2 ttl-1 => 2K R 0 ÷ f2 RO-1. This leads to the inequality
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f2 R;2 f2 2
R1 >_ R 0 2K(R 1 - R-_• 2-'_O " 2K(R 2 - R O)

Using the expression for c given in (3.12), we find that

R 1 > f2O/2K R0, as we desired to prove•

For any t between t o and tl, either in the case just

treated or in the previous case where R(tl) > _(2K RO )'I, we of course

have R(t) • Re; and hence, the Sundman inequality, with the monetonicity

of R(t), leads to the result that R(t) R(t) 2 + 2KR(t) * _R(t) "I _ 2KR 0

From this, we get after n,, elementary calculation the inequality given in

the statement of the theorem, the proof of which is now complete.

Theorem 4. If i_0 • min[f(2K) "I/2, 3f20 2 "1 H'2(_ ÷ 4_'I/2], then P

attains a value at least as great as 2H2/(SK).

Proof. By Theorem 3, R attains a value > Of2/(2K R0) which cannot be

less than

i

e f2 = _42 -
_-f (m * 4_')2 .

2k[ 3f2e
2H2(_ * 4_) 1/2]

ltence, by Theorem 2, the corresponding value of 0 _ 2_/(3K).

Theorem 5• Let X = 2_/ [3(K m*)l/2], then [r r[ _ X •

_) _) .zProof. From r 2 = x 2 ÷ y2 ÷ z 2 and r = x( ÷ y( * z(_) we find

•2 .2 .2 .2
from the Cauchy-Schwarz inequality that r _ x ÷ y ÷ Z , which by the

energy integral (2.10) is less than 2m "I U. Since r is the least of

÷ f2R_l
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the chree mutual distancesj we have

r 2 <
2(mom I ÷ m0m 2 ÷ mlm2)

m r

As shown in the proof of Theorem I, mom I + mom 2

r2 _2 < 2 H 2 r 4 bl2 r
<=-----r-

3m

by (2.13)• Now, by Theorem I, r < 1,12[5K) "I. _ience

r2 _2 < 4 M4

=9m* K

so that

Jr _l < 2 _12 ,,
-- 3(m* K) I/2

as desired.

1

+ mlm 2 < -_M 2 . Hence

1_,eorem 6. If R R • B(R) I/2 where B(R) = (4 H I/2 _3/4 RI/2 + A _)2

then # _ • 4 M1/2 01/2 .

2
Proof• By (2.11) _ p < R 2, so that

1 1 l

43.13) R2"> : 0 _"

Also by differentiation of (2.11), we have _op = R }'_- m r r. Applying

Theorem 5, we see that - m r r > - Am, while

R {_• 4 _i/2 _3/4 RI/2 ÷ f_ >_4 _II/2 3/4 Rl/2U + Am , in accordance with

(2.15) and (2.14). Hence _PO • 4 M I/2 5/4 RI/2. Referring back to (5.15),

• MI/2 1/2
we see that _pp > 4 _ p , whence the stated result follows on

division by _.
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_eorem 7. Let

e = min f( _ 3 e
' 2 M2(; • 4 ;)l/2

and let

o = --
Of 2

2 K_

If

C f2

i¢ o o oZj •R0 < rain ' _ ' 2[a(o) ÷ K

then R takes on the value o at some later time t =tRo

corresponding value of R is such that o2 _2 • B(o).

and the

Proof. If

1

0 _- f f

RO£ e £'_--" < ,/_

we know from Theorem 3 that

> 6 f2/(2K RO) >_ 8 f2/(2K_) = a .

o1/2 f
R < E < _= r] ,

0 _ u

say. But then

2 0 f2

q = 2-'K"- *

so that

R will attain a value

R also takes on the value

0 f2 of 2

n = 2-t-7__2-_== o •

llence R takes on values both less than o and greater than (or equal

to) o • lJence, since R(t) is continuous, it takes on the value o at

some t = tRo.
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w

By the second part of Theorem 3, we see that at

where R ffi oj we must have

2 _2 f2 o f2

o > Co - RO) C_o- 21<o) >

as we wished to prove.

f2 o

[_C=') ÷ K_2]

= BCa3

Theorem 8. Under the hypotheses of Theorem 7, tile value of p

2 M2
is • _ , while that of R is • _(3K) "l (_ + 4 u-_I/2.

at t = tRO

Proof,
8 f2 3 8 f2

o =- and e •

2 K ¢ 2r .2"--tm * ¢ U)--'1/2 "
Hence

o •

_reover

I

e f2 = ",12(3., 4 ;) 2
2K[ 3el2 3K "

L2M2¢_+ 4 D 1/2 J

R = o when t = tR0.

R • M2(_ * 4 _)1/2
3K

Hence at t = tRo we have

Hence, by Theorem 2, we have

2
Theorem 9. If 0 > ._ _'- •

of O, we have

bound.

2 H 2

p _-- when t - tR0 .

then "p • - B M p-2. If for any such value

_ 4 HI/2 p-I/2 P will constantly increase without

We omit the proof of Theorem 9 because the proof in [I] is

entirely satisfactory.
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Theorem 10. In the three body problem with masses moJ ml, m2J suppose

the total energy - K to be negative; so that K • O. Suppose also that

the angular momentum c of the system about its center of mass is not

zero; so that f = Icl • O. Let R be defined by the formula

g

[4-1(m0m I 2R 2 - r_ • mlm 2 r_ • m2morl, ,

where ,H = m 0 + m 1 ÷ m2 and wlmre r i is the distance between mj

and ink. , j # i, k # i, j # k,

I. Then the minimum of these three mUtual distances is under

all circumstances not greater than H2(3K) "I and there exists a positive

number R 0 such that, if R < R 0 at any time t = to, there exists

M2. - D1/2
a later time t 1 such that R(tl) > 5-K--tKm + 4 where _ is the

greater of the two smaller masses and _" = 2 m0mlm 2 It /m j m being

the least of the three masses.

II. For t > tl, the pair of masses closest together retain

their identities and t_lim R(t) _ ®, so that two of the r._ become

infinite while the third one remains bounded (by _I2(5K) "1) as t ÷ _.

III. A number R 0 for which the above is true may be calculated

as follows: Let X = 2 M2/[5(K m*) I/2] and B(R) = (4 ,_II/2 _5/4 RI/2 . A_)2 .

Choose any positive number 8 < I. Let

e = rain ( 2" 5 0

2 _12(_ ÷ 4 _)I/2

0 f2

and let o " 2-"_-_£ " Then finally take
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R0 = rain
0 2[BCa) + K o 2 '

Proof. The assertion under I to the effect that the least of the

three mutual distances never exceeds M2(3K) "1 follows from Theorem Io

The other result under I follows from Theorem 8, assuming that c and

R0 are determined as described under III, so that the hypotheses of

Theorems 7 and 8 are both fulfilled. The t 1 of the present theorem

can, of course, be taken as the tR0 of Theorems 7 and 8.

From Theorem 7 we also have

(3.14) R2 i_2 > BCR)
i

when t = tl, since R(t I) " o .

Let m i and mj be the two bodies closest together at t = t 1

and let their distance apart at any time t be r = r(t). Let the third

body m k be distant p(t) from the center of gravity of mi and mj.

Then from _leorem 8 we know that at t _ t I we must have

(3.15) 0 • 2 b12/(3K) __ 2r ,

Now if, for t • tl, O never decreases, the inequalities (3,15) persist,

since, as long as r(t) remains the least mutual distance, 2r can never

exceed 21.12/(5K) whereas both r. and r. exceed o - r > 2r - r = r,
1 j

and for r. (for instance) ever to become less than r, it would be
1

necessary (by continuity) for r i and r to be equal at some t • t 1.

But this is impossible, since the posibility of changing the first inequality
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sign in (5.15) to an equality sign is ruled out. This mem*s that the

pair of masses closest together retain their identities for t • tlJ

at least if p never decreases.

That P does indeed never decrease for t • t 1 but actually

increases without limit may be seen as follows: From (3.14) and

Theorem 6 we see that at time t = t 1 we must have

1 1

(3.16) _ > 4 r,l2 o 2

IVe now combine (5.15), (5.16) and Theorem 9 to show that

(3.17) lira p(t) -- -

t_._

Finally, the proof of Theorem 10 is completed by the remark that the

result

lim R(t) = -

t_

follows from (2.12), (3.17), and Theorem I.

[i]

Reference

George D. Birkhoff. Dynamical Systems, American Mathematical

Society Colloquium Publications, vol. IX, Chapter IX.

Especially pp. 275-282.
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An Algorithm To Obtain Series Expansions

in the Three-Body Problem

by P. Sconzo

IBM, Cambridge Advanced Space Systems
Cambridge, Massachusetts

e

N67-29375
This report on Contract NAS 1Z-98, "Modern Celes_tial Mechanics, "

awarded by NASA=ERC to IBM=Cambridge Advanced Space Systems, deals

with the analytical solution of the three=body problem by means o£ convergent

power series expansions. The method followed uses only simple algebraic

tools and fully exploits the properties of Levi-Civitats regularizing transfor-

mation. Stimulated by the suggestion made some years ago by Verni_ (I 955)

to take advantage of this transformation for purposes of practical computation,

we present here, for the first time in the long history of the three=body

problem, a workable algorithm for constructing recursively its power series

solution in terms of Levi-Civita's regularizing variable. This method solves

the three=body problem formulated in its utmost generality, since no restric-

tions at all are made on the order of magnitude of masses and distances and

none of the three bodies is restricted to move along a conic section orbit.

Besides, the reference system used is a tridimensional inertial one.

After an introductory section dedicated to the historical background of

the problem, the second section deals with the discussion of the algebra in=

volved in the derivation of the time series solution. In a third section) the

radius of convergence of this solution in the neighborhood of a non=collision

point is determined according to Sundmano Section number four describes

the property of regularizing variables with particular emphasis on Levi-

Civitafs variable u. Finally, in the fifth and last section the power series

solution in the new variable u is constructed by a procedure of successive

approximations in which only elementary algebraic operations are to be

performed on polynomials.

In the conclusion) a comment is made about the merits of the algorithm

described in Section V, and the items now being developed to implement this

investigation are listed.
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I. INTRODUCTORY BACKGROUND

The first remarkable contribution to the analytical solution of the

general problem of the motion of three bodies subject to mutual Newtonian

attractions was made by Painlev$ (1896). Here, the designation "general

problem" is used in contrast to "restricted problem, " which characterizes

a special case of the three-body problem, namely, that when one of the three

masses is negligible and the two bodies of finite mass revolve around one

another in circular orbits.

In various papers and in his masterly lectures at Stockholm (1897),

Painlev_ I demonstrated that: a) the motion is regular and the coordinates

may be represented by series of polynomials in t (timel in any interval in

which no collisions occur; and b) the motion ceases to be regular in either

of the following cases, when the three bodies collide at the same point or

when only two of them collide, their distance from the third body remaining

a finite quantity. The analytical characterization of the occurrence of col-

lisions was later examined by Levi-Civita 2 (1903.-04) and his disciple

Bisconcini3(l 9041. They also investigated qualitatively the holomorphic re-

presentation of all possible trajectories starting at a collision point within a

small domain around this point.

Subsequently, Sundman 4 (1907-191Z) made the second and decisive con-

tribution to the analytical solution of the general three-body problem. He

demonstrated the possibility of representing the coordinates and the veloci-

ties of the three bodies by means of convergent series and determined their

radius of convergence. The key points of his proof are: a) the existence

theorem by Cauchy-Picard for the solution of a system of differential equa-

tions of the Ist order; and b) the transformation of the independent variable

t into a new variable u by means of

(I.l) du = idt
r

where r is the distance between two colliding bodies, that is the distance

which will vanish at a given value _ of t. After showing that lim u exists
t _

and is finite, Sundman demonstrated that the coordinates and velocities,

even in the neighborhood of a bina{_ collision point t = _, can be expanded in

convergent power series of (t - i) /3. This helps the understanding of the

analytical nature of the singularity point. In fact, three branches of the

same function can be permuted one into another around the point t = _. It

is possible, therefore, to continue analytically the representation of u, the

coordinates and the velocities after, or before, the collision point by always

taking the real value of the cubic root of t - T.
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o

It is of historical interest, however, to note that in order to remove the

singularity at a binary collision point t = T, the appropriate choice of the

variable u, according to the transformation (I. 1) had been pointed out earlier,

but not exploited, by Bruns 5 (1884)..

After Sundman's work, the regularizing variable concept was generalized

in various directions (successive binary collisions, triple collisions, imagin-

ary collisions, other regularizing transformations, interpretation in the com-

plex domain, etc. ) and also gained acceptance an_ong authors of classical
books on Celestial Mechanics, notably, Charlier ,Wintner 7, Siegel 8 and

others. Recently, Arenstorff 9 has published a series of papers on this sub-

ject using methods taken from the theory of the functions of complex variables.

The goal of this paper is to describe an algorithm leading to the construction

of convergent series expansions of the coordinates when a regularizing vari-

able of Sundman's type is used as the independent variable. Our choice for

this variable is given by the transformation

(I.Z) du = Vdt

indicated by Levi-Civita at the end of his celebrated memoir of the year

1917.10 In (I. ?-) V is the total potential function defined as the negative of

the total potential energy. Verni_ 11 advocated also the application of the

transformation (I. 2) to numerical computations. A goal similar to ours is

that pursued by Steffensen 1Z to obtain the time series expansion in the case

of the planar restricted three-body problem by means of recursion formulas.

It turns out that replacing t by u, recursion formulas can also be found for

the case of the general three-body x_roblem. In fact, explicit expressions for

the derivative of the coordinates d__...i_i , for sufficiently large values of _ will

du_
be established later in this report. The application of the transformation

(I. 1) or (I. Z) tothe Z-bod 7 problem leads to a unified set of formulas valid

for any kind of conic sections. A heuristic approach to the derivation of such
universal formulas has been illustrated elsewhere. 13

II. THE EQUATIONS OF MOTION AND

THEIR SOLUTION BY TIME POWER SERIES

Let m0, m , m be three non-zero masses and write the equations of1 Z
motion of all three bodies in an inertial Cartesian reference frame

8V (i = 0, l,Z)
(II.I) m._. --

i i 8x. ' (x-"y "' z )
"t
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Here, the dots represent derivatives with respect to the variable T

(II. z) T= kt,

k = gravitational constant,

t = time.

The total potential function V in (II. 1) is defined by

(II.3) V =!.. mimj l__r..' (i # j)
xj xj

where the mutual distances r.. between bodies are given by
U 1

(II. 4) rij = (xj- xi) + (yj - yi ) + (zj - z i)

Then, the explicit expression for equation (H. 1) is

(11.5) _i = mj/aij (xj - xi) + mk/aik(X k - xi),

where the subscripts i, j, k are permuted cyclically according to the

following rule

(II. 6) il ik0 Z

1 0

Z 1

and, in general, _ij

(II. 7)

= /_ji is the inverse cube of the distance rij

1

_ij = -_
r..

ij

Equations similar to (II. 5) can be written for the other coordinates Yi and z i.

The formal power series solution of the equat;ons of type (II. 5) can be

written as follows

(i = O, 1, Z)(II. 8) xi(_ = xiv Tv ' (xi _ Yi "zi)
V=O

d
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where

1 d x i[--]
(II. 9) xiv = _ dt _ T=0 '

and T--0 is an initial (origin) value of T. The first two coefficients of the

expansion (II. 8) are

{If. 10) xi0 = x.iC0) , xil = _iC0) ,

that is, position and velocity components at origin T= 0. Initial position and

velocities components of aU three bodies are assumed to be known.

The next coefficients of the Maclaurin expansion (II. 8) is 1 _. (0)

which can also be obtaine: i_" by directly evaluating the RHS* of equ_at_on (II.5)

at T = 0. The other coefficients of the higher order terms can be obtained by

repeated differentiation with respect to T of equation (II. 5).

This repeated differentiation requires, however, a considerable effort

in algebraic manipulations. In fact, there are nine differential equations of

Znd order, coupled together by the mutual distances; hence, there are nine

Maclaurin series expansions in which the coefficients depend on several in-

termixed parameters {mutual distances, masses, positions and velocities).

The expressions for these coefficients become extremely complicated, and

their complexity increases with the order of the differentiation. This ex-

plains why in the past the computa_n of these coefficients was considered
to be impractical, until Steffensen found a relatively easy way of computing

them in a special case. This author showed that it is possible in the planar

restricted case of the three-body problem, which reduces to only two coupled

Znd order differential equations, to establish recursion formulas for the

computation of the coefficients of the two corresponding time series. Earlier

attempts on this subject were thos_sfor the asteroidal case of the three-body
problem by Stumpff and Sconzo . Rabe 16, Deprit 17 et al. have recently

made use of Steffensen's formulation in numerical studies of planar restricted

problems. Another interesting attempt to _et the high order terms of the
time series has been described by Gr'Sbner 18 who applied Lie_s concept of

infinitesimal transformationl9 to the study of the n-body problem. In the

application of this concept to the planar case of the three-body system formed

by the Earth, Moon and spaceship, however, only the 4th order coefficient of

the time series has been computed explicitly. In another paper by

Bogayevski¥ 20 , where a lengthy recursion formula for Gr_'bner coefficients

is presented, only the 3rd order coefficient is given explicitly in terms of the

initial conditions. Bogayevskiy's procedure is complicated not only because

the notation used is very complex but also because the number of terms which

*Right-hand side
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constitute the desired expression is to be determined solving Diophantine

equations.

Now, we deem it noteworthy to present the expressions for x and x

arrived at b 7 two successive differentiations of equation (IL 5) wr0t_en for 04

i = 0. The following concise expressions can, in fact, be derived

d3x° _Eml"0101 m2"o2°02]101x0c°I(..11, x°3:_,[7 ],o,: 1 o +
1

"6- Eml/'L01 +m2"02](0)0(0)

-_Em_'o,°o_],o_,'°'+_-E_,o,Ij,(o,

d4x

= -- 8{ml. 01 2 20 ] E (_1-5°01)+m2"02('02"5002)}
(II.121 %4 ¼_ [ d 4 (01=

+ 2+ _Z)}](olXO(O )
"Z-'_4{ (rot" 01+m2" 02)2 + mo(m iI-401 m2"

+_I_.oror_.o_°o_],oh(°,

+ml_ - 1 2 2_.o1(_ol - %11 * _{mz.oz. lz-(mo*mll%l

-m2"o1("02+"12}}](01xl(0,-¼[_I"Ol%l](0_I(01

1 2 1 Z
• r%[-_.OZI_oz-5OOZl * _ {ml" 01"lZ -(mo*mz)" OZ

-ml.o2(.oF. i2)}](o)_Z(°)-¼[mZ" 02°02]_z(O)

if the following notations are adopted
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(n. 13)

• (II.t4)

where

1

ool= -_ sOl ,
ro1

1

(O1 = -_ So1 '

rOl

So1 = (S,z) [(x I" Xo)(_ I- ]_0)] ,

mo+m 1

=

The symbol (yS, z)E...- ] means a s.rnextendedtoterrns in the variables

y and z similar to that in x.

Inspecting the structure of the RHS of both equations (II. 11) and (II. lZ)

we see that up to the third order term the perturbation effect upon the co-

ordinates of the three bodies is of the first order with respect to the masses,

while starting from the 4th order term this effect becomes of Znd order or

higher.

Applying the cyclic permutation of the indices indicated by (II. 6) to

the equations (II. 13) and (II. 14), the expressions for Xl3, x14 and xz3 ,
can easily be derived from (II. 11) and (II. 1Z), respectxvely. Similar xz4

expressions for the y and z coordinates can also be easily derived. We ob-

serve that Bogayevskly's expression for x0_, presented in ten strings of
terms, can be simplified to only 8 non-vari£shing terms and in its simplified

version it coincides with our polynomial expression (II. 11 ) which contains

precisely 8 terms.

We want now to call the attention of the reader to the fact that both equa-

tions (II. 1 1) and (H. IZ) have been brought to a form analogous to that of the

coefficients of the Lagrangian f and g series in the two body problem. Zl The

symbols _i" ' _i" c .. are also an extension of the symbols _, o, E adopted
for the two-Jbod_ problem in the referenced paper. Although the said analogy

can be extended further and formulas similar to Cipolletti's zZ recursion for-

mulas could be established (this will be the object of a later IBM funded in-

vestigation) here, we will not try to derive explicitly the expressions for

the derivatives of the coordinates with respect to the variable T corres-

ponding to an order _ >.. 5. Our aim as it has been stated in the introduction

is to obtain these high order derivatives with respect to the new variable u.
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It is important, however, to determine the radius of convergence of the

series expansion (II. 8). We dedicate the next section to this problem.

HI. CONVERGENCE OF THE TIME SERIES EXPANSION

It can be said, in general, that the convergence radius of the series

expansion (II. 8) is determined by the distance of the nearest singularity

point (real or imaginary) to the origin. It can be demonstrated that the

series (II. 8) is convergent in the neighborhood of a non-collision point. An

upper positive bound T of the independent variable T reckoned from the

time of a non-collision point _" can, in fact, be found such that within the

interval (-T,T), centered at _, the series (II. 8) is convergent. To

demonstrate this we will use Cauchy's theorem as implemented by Picard Z3

on the existence and uniqueness of the solution of a system of first order

differential equations in the real domain.

Let

(Ill. i) fi_Xl(T), xT. (_) ..... Xn(T)_, (i= I,Z ..... n)

be real functions of the real independent variable T, but not containing T

explicitly, satisfying the following conditions

a) they can be expanded in convergent power series of x.- _.
1 1

when

(III. Z) J xi - :i J < _Ii '

where E. = x.(Y), Y is an arbitrary value of T, which can be taken Y= O, and

all H i _re x . .posxtxve quantities;

b) it is

(xII.3) If i I < F i ,

when x. satisfies the inequality (HI. Z) and where all F. are positive quantities.
1

Then, _-he system of differential equations

dx.
(III. 4) x

dT x

admits one and only one solution such that
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(III. 5) lira x. = -_. .
T"*_" 1 i

Under the conditions specified above it can be added that it is possible to

expand the unknown functions xi(T ) into a convergent power series of 7- _"

for any value of _ such that

(re.e) I_-_I < T.

where

(III. 7) T = min { _i

1

Furthermore, the inequality (IILZ) is verified when T is chosen according to

(m. 6).

In order to apply the Cauchy-Picard theorem stated above to our system

of nine differential equations of 2nd order (II. 5), we transform this system

into another system of 18 first order equations as follows

(111. 8) dx. I

dT 1

(x.-"v.--"z.)
dx. I -I 1-

1 = m._..(x.- +
(III. 9) d'7-- J IJ J xi) mk_ ik(Xk - xi)"

Now, let rl0 and _0 be two positive constants such that

(m.lo) Ixi-_il, lyi-_i[, I. i_ _il < %,
(i = O, I, Z)

(IH. 11) l_i-li[' l_'i'_i I' ]_i-_i I < _0'

and we will demonstrate that condition a) of Cauchy's theorem is satisfied,

that is the RHS of equations (IIl. 8) and (llI. 9) can be expanded in convergent

power series of the differences xi- "_i' etc. It suffices to demonstrate that
under the conditions (III. 10) the inverse cube of any of the three distances

r.° can be expanded into a convergent series.
1j

We take into consideration, for example, the distance r01 and we write

2 _2

(III. 1Z) r01 = r01 + P01 '

where
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(III.13) _Z : -r01 -- r I(T) ,

and P01 is a second degree polynomial in the differences x 0- x0' etc.

The explicit expression of P01 is

(III. 14) PO1

It follows that

(IIl.15)

because

o(s ,,,,x°

_ 2
[P01J _< lZroln o + lZ_ 0

(III. 16) I_l-eol' 171-7o1' I_l"_ol _< _Ol "

1 1
-- as well as that of/_01 =

Consequently, the expansion of ro 1 ro1

3

1 P01 - "2

(llI.IV) /z01 = _(I + _ )

ro1 to1

is convergent if we choose _qO such that

Z 2 Z

(III. 18) 12Y01n0 + lZno < r01

or

(III.19)
ro1

n 0 <
6+ 4¢_

Condition (HI. 19) is satisfied afortiori if we take

to1

(In. ZO) nO = 1-T "

We determine now two upper bounds for the RHS of both equations

(III. 8) and (III. 9}. We begin with the equations of type (III. 9) and we observe

that with the choice (III. Z0} we can first deduce

2 _ 2 2(III. 21) to1 > FO1 " 12rOlnO " lzn0 = 7 _'01
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and since

we deduce also

(III.Z2)

Then

(Ill.Z3)

-x o1.< I_l-_Ol+lx o-%l+lx 1-_ll,

_ 8_
I_1 - %1 < %1 + Zno = _rOl"

I.oi% - Xo) [ < \ / _'ro1 ffi --_

ZFO1 4_ 0

and other inequalities similar to (IIL 23) can be established for

I/_02(Xz- Xo)], etc.

Now, if T = _ is a non-collision point we can find a lower bound of the

three distances at time T = _ , that is a positive number T]_<_]0such that

(IH. Z4) _01' _0Z' _lZ > 14T].

Thus, the inequalities (III. 10) can be replaced by

(III. 25) Ixi- %1,IYi l, I"i" I <
and the inequality (IIL 23) by

(nl.z6) I.o1(X I - %)I < JL
4n 2

Considering the equation (Ill.9) we then obtain

(IlL Z7)

where

(m. z8)

dx.
x 1 M

I _"r I < _ (mj +m k) < -- ,
4_ z 4_ z

M-- m 0 + m I + m Z .

Now, we deal with the equations of type (IlL B).

existence of upper bounds for the velocities at time T = _'.

by considering the energy integral

We first deduce the

We prove this
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(III.Z9)

Z

Z .Z ,Z _.Z
1 mi (xi + Yi + i ) - V = h

0"=

rewritten as follows

_, momlmz momlmz,Z .Z E.Z) Z U =
(IlL 30) mi (xi + Yi + _ - M M

i= 0

where

m0mlm z m0m I m0m Z mlm z

(IIL31) M U = V = + +
r01 r0z rlZ

h ,

and h is a constant.

When T-*_, U -* U, where _ according to (III.31) and (III.Z4) satisfies

the inequality

momlm z 1

(III. 3Z) M U < (m0ml + m0mz + ruling) 1_ "

Now, we can apply to the RHS of (IIl.3Z) the following obvious result

M z = (mo+ m I + mz)Z >i 3(morn I + morn z + mlmz).

Doing so, the inequality (III. 3Z) becomes

(llI.33)

momlmz M z

M U _< 4z_l

It can also be proved that,

M z > 4m0m 1 , 4m0m z , 4mlm z

then, we have in general

M mjmk
(III.34) -- >4 M

(j # k)

If we now divide by m all terms of equation (IH. 30) written for 7= _, where

m = rain [ m O, m I, m z] ,
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we deduce

T2 72 TZ lvi 2 M

xi Yi z. < + Ihl' ' 1 Zlm_ -4- "

Letting

zM Z Mcm. 35) _o -- i'_ +_-Ihl

we have

I_xiI' I_il' I _'il < _o

and we obtain from (III. 11)

(raL36} I_il, I_il.l_il < Z_o.

We may conclude that selecting T as follows

(III. 37) T = rain { _] _0z_o' i_ z} },

the series expansion (ra. 8) is convergent for any 7 such that

(ira.3g) I _ - _ I < T.

The entire proof given above has been borrowed, with 0nly slight modi-

fications, from the original memoir by Sundman 4c It is worth noting that,

of both ratios contained in the RHS of equation (Ira. 37), the first is smaller
than the second. In fact

_o 8_Zo n
_ +_--_ --2_o_ ( M - ' )-- _ (_+2_lhl 1)>0

8M 8M

because 3m_< M, and consequently _>t 1, _ > 1.

Hence, all the series expansions of type (II. 8) are convergent for any 7
such that

(Ill.39) 17 " _'1 <

4MZ + M Ihl
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and these series represent the analytical solution of the three-body problem

which satisfies the preset initial conditions for position and velocity at time

IV. ON REGULARIZING VARIABLES

We say that a variable is a regularizing variable if it has the property

of removing that singularity of the differential equations of the motion which

corresponds to a binary collision,

We will show that the variable u introduced by the Levi-Civita trans-

formation (I.Z) is a regularizing variable. We demonstrate first the fol-

lowing lemma: if S(r , r , r12 ) is a symmetric and homogeneous function0
of first degree ofthe_ree _istances r0l, r0z, r.2 , then the variable u
defined by means of the differential operator- l

d 1 d

(IV.l) _ = S du

is a regularizing variable.

In fact, applying twice the operator (IV. 1)to x. and denoting by primes
1

the derivatives with respect to u, we obtain

(IV. 2) _. = 11 _ xi"

1 ..- S"

(iv. 3) --  zxi - '

or vice versa

(IV. 4) x.* = S_. ,
1 1

(IV.S) x:'= s§_. + sZ_.,
1 i 1

if we observe that SS = S_.

By virtue of (IV. 3) and (IV. 5), the equation of motion (II, I) acquires

the form

t, S" xi + S z 8V(IV.6) xi = g m. _x.
1 1

or the equivalent form
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(iv.7)
•, _-_. S z aV

x. = _x. +
I I m. 8x.

1 i

The latter can also be rewritten as follows

S 2 8V 8r..

Z - Z% --"-jSrij mi ij _x. 1

We examine now the order of the infinitesimal terms which constitute

the RHS of equation (IV. 8) written for i = 0, 1 when the two corresponding

bodies collide at a certain time T = T, that is when T-*_limr0l = 0. Considering

r01 as an infinitesimal quantity of first order, the order of all functions de-

pending on r01 can be listed as follows

Function S xi (and also 8__S_S . S z BV 8r01

Yi' &'i ) 8r01 r01 8r01 8x0' BXl

1 1

Order 1 - _ 0 - _- Z -Z 0

All these results are evident except those for _ and _ which may be de-
i 01 . . .

duced as a consequence of the following four limits known as Blsconctm-

Sundman's 4c, 3 relationships

lira = 7Z + ,r-_- (r_01 _01 > H = - (m 0 ml)

lira/
v"¥k4 r01 xi): CxH '

(Iv.9) (i: o,l)
lim• ( )=%-.
lira (

where C , C , C
x y z

are three constants such that

C z + C z + C z = I .

x y z

Then, it follows from (IV. 8)
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Ol lira . r 0°l 01) (i:01 
where

lira
= -- u

T_T

We conclude that

lira
(IV.lO) x; = c _ o,

U_ 1
(i, = O, I) ,

that is, the RHS of equation (IV. 8) is a constant C different from zero when

the two bodies (i = 0, 1) collide.

As a consequence of this lemma we conclude that the variable u defined

by Levi-Civita differential operator

d d

(_v.il) iT = v d'-'C

is also a regularizing variable.

V. USE OF LEVI CIVITA'S DIFFERENTIAL

OPERATOR AND RECURSION FORMULAS FOR THE SOLUTION

Applying the differential operator (IV. 1 1) to the equation of motion

(II. 1 ),we obtain

(V.I) Vx7 + V_; = 1 8V (i=O,l,Z)
I x m.V 8x. (xi'Yi _ zi)

I i

In this equation the function V is to be considered as a function of the variable

u. Since V is a known function of T, in order to obtain its dependence on u

we proceed as follows. First, we calculate

T

(V.z) u(Z) = \ V(g) d_
_J
0

The RHS of equation (V. Z) is a power series in 7 , which for practical pur-

poses can be truncated to a polynomial of certain degree.

Now, reversing the series given by (V. Z), we get
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(V. 3) "r = T(u) ;

then we insert (V. 3) into the expression of V(T). Denoting by V(u) the

result of this operation we can rewrite equation (V. 1) in the new form

Vx. + _'x" *---- Xo ,(V. 4)

where

* 1 _-1 8V
(v. 5) x. = -- v --

x m. 8x.
1 I

Next, let

(v. 6) xilu) --7 xiv*uV

V=0

be the formal series expansion of the solution of equation (V. 4).
also

(v. 7) X.(u)_ = _ Xivu ,
v=o

Letting

V

V=0

and inserting (V. 6), (V. 7) and (V. 8) into equation (V. 4) it will not be difficult
to arrive at the following recursion formula

_-11
(V. 9) - _ 1 r **

_iv v (v- I)_0' iv- _. v VO k_=1X -- --'w-- (V-k) VkXi__k , (v>_Z) .

Formulas similar to (V. 9) can also be established for Yiv' ziv after defining

* I *_-1 8V
(V. lO) Yi = m--_. V -- ,

I 8Yi

* 1 _-1 8V
(V. ll) Z. = --V

o

1 m. 8z.
1 1

Since
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(v. la) Xio = xi(O)

I ,

(V. 13) Xil = ? xi(0)
V
0

are known, the use of (V. 9) for v = Z, 3.... provides all the coefficients

needed to write the formal expa_asion_f x. in a, power series of u. We need
1 ....

to start from known values of X.^ , V^ and V, as functions of the lmtlal
1U U I .....

conditions. For this purpose we observe that starting from the given initial

conditions (II. 10) we can write the following linear approximation

(i = 0,1,Z)

(V. 14) xi = xi0 + XilT, •(xi-'Yi ' ziP

6

Then, we have

Z _Z T
(V. 15) rij rij + Pljl

where
Z

Z S x - Jij = (y, z)E jO Xio

pi,i: (s.:>[(=s0-XiO)%l-x.)].

It follows from (V. 15) that

m.m.

(V. 16) _ =
r..

D
gijo + gijl T '

where

gijo

m.m.

_..

zj

Hence

(V. 17)

gij i
1

= "Zy.?._ gijo Pijl "
zJ

V = Vo+ VIT ,
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where

V0-- _. gij0 ' Vl -- Z. gijl '

Ij _j

and according to (V. Z) we obtain

1 Z

(V. 18) u(T) = V0_ + _-VlT

Reversing (V. 18) we get

1 1 VI Z

(V. I9) _-- -_0 u- _- --_u .
V 0

Inserting (¥. 19) into (V. 17) and truncating the result to the linear approxi-

mation we obtain

V(u) = V 0 + VlU ,

V 1
_-i(_) = I__ _

V 0 V 0

where

# * V 1

(V. 20) V0 = V0' V1 = V-_

We have also

(V.Zl)
l 3

"i)= _-3--r..Z_S Pijl_
Ij Ij

(V. Z2) xj- x i -- (Xjo- XiO) + (xji- Xil)

Finally, inserting (V. 19) into (V. Zl) and (V. ZZ) and performing the products

mj/_ij(x j - xi)V -l xi)V-I, mk/aik(Xk- and their sum we obtain

X = + XilU ,i Xio
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where X. and X . are now known expressions of the initial conditions (II. 10).

ma_er of "1 * .
_alct we can find Xiz directly from its defimtionAs a

• 1 dZxi

Applying twice the inverse operator of (IV. 11) to x. we have in fact

d_Z x dx i
i I dxi I 1 i I dV

Z du Z Z V dr drZ V 3 dT dT/

and the evaluation of both sides at the origin (u = 0 and T = 0, respectively)

provide s

I [ _i]t=0 i(v.Z3) = _ - _ Vlxil ,
_iz z vo z v o

where

'E'q [_i]t=O = Xiz = m'-'_ t=O

The result expressed by (V. Z3) coincides with that obtained from (V. 9)

if we put v= 2. We take into consideration (V. 13) and (V. Z0), and we ob-

serve that by virtue of (V. 5) _i0 = _0[_i]t=0"

Next, in order to obtain x._, we need to know V_. We arrive at V Z byz

_eplacing (V. 1 4) by a second _egree polynomial in u which is known because

x.._is now a known quantity. The computation, of the Znd order *expressi°ns

irthevariableuforr, m m and willpro dethedesiredV..Thesame

r..

1j

procedure is then applied to compute V 3 ..... and, therefore, all,other co-

efficients of the series expansion (V. 6).

The algebra involved in this computation, in summary, consists of the

following operations to be performed on polynomials

subtraction

multiplication 1 3

integer and - _ and - _- power
reversion and _nversion
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substitution of the variable of a polynomial by another polynomial

integration

This algebra is being programmed for polynomials of arbitrarily high
degree.

We observe that the polynomials in the variable T (polynomials of first

degree) of type (V. 14) are needed only to initialize the computation. The

computation is then continued by using polynomials in the variable u. At

each successive approximation, a new term will be added to the polynomials

expressing the nine coordinates.

The relationship between T and u should also be computed at each ap-

proximation replacing equation {V. 2) by the equivalent equation

_ 1 do(V. 24) T = --_

v(_)

CONCLUSION

The series expansion of the solution of the three-body problem has been

found in terms of Levi-Civita's regularizing variable u. The recursion for-

mulas of type (V. 9) are the key points of the computation. By means of these

formulas the coefficients of the series expansions for all nine coordinates

are expressed as functions of the masses and the initial conditions.

That these series are convergent can be demonstrated using a well

known theorem applied to the solution of linear differential equations of type

(V. 1) when they are solved by the power series method. This proof is being

adapted to our type of equations and it will be presented in the next report.

It is expected that by using power series in the variable u, the analytical
representation of the motion can be extended to an interval of time much

larger than the step-size used in numerical integration procedures. If so,

the method could advantageously be utilized in place of numerical integration.

it would, in fact, lend itself to being exploited as a numerical tool for the

analytical continuation of the solution. A previous effort in this direction,

using time series expansions, was made in 1955 by the author of this inves-
tigation. 15

In the next report we also intend to present a computed numerical case

of the three-body problem using the method illustrated above. Specificall[,
we will choose an example considered as a "zweckm'_ssig" one by Bohlin Z4
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and for which results, both in tabular and graphical form, have been obtain_

by Zumkley Z5 who used a numerical integration procedure. In this exam_

the masses and the distances have the same order of magnitude, and the

example is, therefore, appropriate to be used as a test case of the method

described above. The only simplification used in this example is that it

deals with a planar case instead of a tridimensional one, and this has been

done in order to reduce the burden of the computation without prejudicing th

general validity of the formulation. Some preliminary computed results we

have obtained by hand computation,carried out up to 5th order terms in u,

confirm the expectation that large intervals of time can be covered by this

kind of truncated series representation of the motion of all three bodies.

i.

Z°

3.

4.

5.

6.

7.

8,
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By utilizing results of llamiltonlan theory and the yon Zeipel

method for treating artl£icial satellite orbits, error bounds are derived

for a general class of orbits with eccentricity less than one. In order

to extend the error hounds for the general axlsymmetrl¢ problem to tlme

intervals of the order i/J2, the known integral of energy Is utilized

to calibrate the governing differential equations for the rapldly rotating

phase. The non-slngular rapid phase in thls analysis Is taken to be the

sum of the mean anomaly, argument of perlapsls and the right ascension of

the ascending node. A corresponding analysis for the general asymmetric

problem (including the tesseral harmonics) is also given. From the

general error analysis an algorithm is derived for the computation of

the correct initial conditions consistent wlth the expected accuracy

of the'theory. Numerical results verifying the conclusions of the theory

presented in thls paper are also given.

@This work was performed in associ_ion wi_ research sponsored by the NationM Aeronautics and

Space Admmis_ion under Rese_ch Grant NsG-133-61
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I. INTRODUCr ION

The analytical theory of artificial satellite motion has been the

subject of very intensive study since the launching of the first

artificial satellite in 1957. In fact, many aspects of the problem

had been studied before that time in connection with the theories of

celestial mechanics. The result of the study has been a very extensive

list of papers offering solutions of many differing forms and techniques

of achieving them. However, with the exception of the work of Kyner

(Ref. 1), no other solution is known to the authors that offers rigorous

error bounds on the position and velocity for a general class of orbits,

e.g., inclined orbits of any eccentricity less than one. Naturally, the

orbits at critical inclination and orbits in resonance with the tesseral

harmonics must be excepted from the general class. It is then a matter

of general interest to derive such error bounds.

From a fundamental point of view, the problem of artificial satel-

lite motion can be classified as a special case of a general class of

non-linear oscillation problems. Non-linear oscillation problems can

be treated with varying degrees of success by the general averaging

methods developed by Krylov, Bogoliubov and Mitropolskii (i.e., Ref. 2).

For these methods of averaging there exists an associated technique for

establishing bounds on the error build-up in a specified time between the

exact and the approximate solutions (first order or higher order). No_

the method of application of the technique of averaging to the problem

of artificial satellite motion depends rather heavily on the particular

choice of variables employed. In the case of Kyner's work, averaging

could be applied directly; in most other approaches to the problem the
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t

use of averaging is more or less disguised.

One of the most widely used perturbation methods in treating

artificial satellite orbits has been the method of yon Zeipel as adopted

by Brouwer (Ref. 3) and Kozai (Ref. 4). This method is one of successive

canonical transformations and is necessarily carried out in the variables

of Delaunay (L,G,H,_,g,h). With a slight change of variables and a

choice of a different intermediary orbit, the same method was applied

by Garfinkel (Refs. 5,6). Furthermore, it has been shown (Refs. 7,8)

that the yon Zeipel method of canonical transformations is a particular

form of the method of averaging. Hence, by drawing on the equivalence

to averaging, rigorous error bounds could be established for the

Delaunay variables directly. Unfortunately, bounds obtainable in this

way for the Delaunay variables _ and g are unsatisfactory for very

small eccentricity (i.e., e' < J2 where J2 is the oblateness

parameter of 0(10-3)) due to a singularity at zero eccentricity in the

short period terms. A further drawback is the singularity at zero

inclination. Since no singularities exist in the coordinates for zero

eccentricity and/or Inclination, one would expect that these objections

to the bounds would not exist for a suitable choice of variables. The

error bounds derived by such direct application of differential equation

theory turn out to be unsatisfactory for large time intervals i.e., time

intervals of the order i/J 2 . Since one of the problems of interest in

applying closed-form orbit theories is orbit prediction over long periods

of time, the error theory must be modified. The modification is a more

involved problem and a separate treatment is presented here.

In this report, the problem is analyzed in canonical variables;
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the three sets of interest are those due to Delaunay, Hill and Poincare_

/
Of these variables, the Poincare set is non-singular for both zero

eccentricity and inclination, the Hill set singular for zero inclination

and the Delaunay set singular for both zero inclination and eccentricity.

The advantages of the Hill set are the simple forms of the in-plane

coordinate perturbations which are obtained directly from known

generating functions. It was shown by Izsak (Ref. 9) that, to first

order in the oblateness coefficient J2' the in-plane position and

velocity components of a satellite are obtainable by converting via

Keplerian formulae from Brouwer's averaged Delaunay variables (L',G',H',

_',g') to corresponding "averaged" position and velocity and then

superimposing the short-period fluctuations. These short-period fluctu-

ations were shown to be obtainable by rewriting Brouwer's short-period

generating function S 1 in terms of the Hill variables and taking

appropriate partial derivatives. These short-period fluctuations are

well-behaved (unlike those in _,g) when eccentricity goes to zero.

Recent investigations by Vagners (Ref. 10) have obtained in the same

manner first order long-period fluctuations in the Kill variables by

*
rewriting Brouwer's long-period generating function S 1 relating (L",G",

H",_",g",h") to (L',G',H',_',g',h'), including general formulas for

the effects of any zonal harmonic. Analogous "medium-period" (i.e.,

daily) fluctuations in the Hill variables were obtained in a general

form for the effects of the tesaeral and sectorial harmonics. Since the

analysis given by Vagners was applicable to any set of canonical variables,

/
then similar results could readily be obtained for the Poincare variables.

Utilizing the results of Izsak and Vagners, an analysis is carried
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: out in this report which parallels every canonical tranformation of

the Delaunay variables by an appropriate canonlcal transformation of

.o some general set of canonical variables including the removal of second

order short-period terms from the Hamiltonlan. In this way, rigorous

error bounds on the first-order solution are established which are

independent of the eccentricity for Hill variables and independent of

• /
eccentricity and inclination for the Polncare variables (as long as e

is not too close to one). As is shown, these bounds are unsatisfactory

for long time intervals and another method is offered.

A discussion is presented of the various terms arising in the error

bound. Particular attention is focused on the question of initial

condition errors; this question is of interest when computing by means

of a 'tclosed-form" satelllte theory a satellitets ephemeris from some

given initial position and velocity vectors. In view of the extensive

comparison studies of different orbit theories conducted by Arsenault,

Enrlght and Purcell (Ref. ii), wherein the problem of initialization

plays such an important role, this question assumes considerable

importance. An energy method is then given for greatly decreasing the

primary in-track position error build-up due to initial conditions and

some typical results are quoted. The algorithm of computing the correct

initial conditions arises directly from the extended error bound theory.

The authors wish to acknowledge the contribution of Small (Ref. 12),

who first utilized the energy method in reducing initialization errors

in his solution to the problem of satellite motion about an oblate planet.
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II. GENERAL BOUNDS ON SATELLITE MOTION

Before proceeding to more specific treatment of the error problem,

some general statements concerning the a priori bounds on the motion may

be made. First, one can consider the motion of a satellite in a general

axi-symmetric gravitational field for which two integrals of the motion

are known. If the potential field is represented by

V = - _ i - JN PN (sin _) = - [%(r) + U l(r,_)] (II-i)

N=2

where _ is the latitude, R B the equatorial radius, p the gravita-

tional constant, r the radius and JN numerical coefficients, then

it can readily be shown that the total energy and the polar component

of the angular momentum are constants of the motion. The two exact

integrals may be written in the form

A + _ U (r_) = k I (II-2)
a _ 1

and H = _a(l - e 2) cos i = k 2 (II-3)

where a is the semi-major axis of the orbit, e the eccentricity, i

the orbital inclination and k I k 2 are constants.

The two integrals (II-2) and (II-3) imply that if k I and k 2

are given, then the motion of the satellite is confined to a region

bounded by a "zero velocity" surface (Ref. 13). With initial conditions

specifying k I and k 2 one can write the a priori bounds in the form

0 < 51(kl,k2,_) < r < 82(kl,k2,_) (II-4)

where • _ J2' kl > 0, k2 > 0 and J_J_ are assumed values of 0(i).
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General bounds of this type are developed by Poritsky (Ref. 14) and

given for e = 0 by Kyner (Ref. 1). Here the explicit forms of 51

and 52 are not of direct interest.

In the more general problem of a longitude dependent potential one

no longer has the two integrals (II-2) and (II-3). Such a potential

arises when one includes the tesseral harmonics of the Earth's field in

the general satellite problem. However_ by considering a rotating coor-

dinate system fixed in the primary_ one can readily determine the Jacobi

integral of the system. In this case one specifies only the upper bound

by the zero-velocity surface.

One assumes then that a priori bounds on the state vector x are

known; namely, if the initial state vector x(O) is in a set D, then

Ix] _ C(x(O), E) (II-5)

where the solution depends on a small parameter E • Since for near-

earth satellites one is concerned with elliptical orbits, the set D

will be specified by the requirement of negative energy and a non-zero

initial value of the angular momentum. If the state vector chosen for

the description of the motion is some canonical set (q,p), then the

equations of motion take the form

where _ is the Hamiltontan of the problem

¢o = - 0 the canonical matrix

denotes the partials of _ with respect to x
and the super tilda denotes the transpose of the

vector x .
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Then, since _ is continuous and satisfies a Lipschltz condition
x

locally in x in some bounded region _ (then) a solution for all t

exists as a consequence of (II-S).

Note that implicit in (II-5) is also a restriction on how close the

energy and the angular momentum may be to zero. For the general bounds

to hold, these inltial values must be sufficiently different from zero

so that the perturbations_ of order E in the satellite problem, do

not cause the state vector x to become arbitrarily large.
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III. THE SECOND-ORDER HAMILTONIAN

Inherent in a specific discussion of error bounds is a knowledge of

the characteristics of the analytical method used in the fundamental

solution and a knowledge of the behavior of various functions arising

therein. The method utilized in the following analysis Is the yon Zeipel

method and the system analyzed is a Hamtltonian system. For a brief

review of the von Zeipel procedure, the reader is referred to Ref. 10;

the specific details of the orbit problem solution may be found in

Refso 3 and 4.

It turns out to be convenient to introduce the three sets of

canonical variables due to Delaunay, Hill and Poincar_ . (Recall that

the original solution of Brouwer was carried out in Delaunay variables.)

These sets of variables are defined in the following manner: The

Delaunay variables, denoted by y_ are given as

y=[:]=
g

h

L (IlI-1)

G

H

where _ is the mean anomaly

g = _ the argument of pericenter

h = _ the right ascension of the ascending node

6 = _a(1 - e2)

H = G cos i
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Denoting the Hill variables by z,

r

u

h
z =

R

G

H

where

/
And, finally, the Poincare

wi th

one finds

u the central angle or argument of latitude

R = r the radial velocity

variables, denoted by x, are

n2

L

_2

(III-2)

(III-3)

X=I + g+h L=L

_1 = [2(L - O)] ½ cos (g + h) _1 = [2(L - G)] ½ sin (g + h) (III-4)

_2 = [2(G - H)] ½ cos h _2 = [2(G - H)] ½ sin h

Note that equations (III-4) give the transformation from Delaunay to

Poineare / , and that no singularities are introduced in this transformation.

The inverse transformation is given by

= k - tan-i -- L = L

2 2

g = tan-i _i _2 _i + _itan -I -- G = L

_i _2 2

2 2

_2 _2 + _2
h = tan -I -- H = G

q2 2

(III-5)
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In the transformation (III-5), the equations for the momenta L,G,H

exhibit no singularities, whereas in the coordinates _,g,h singularities

will arise for zero eccentricity (_l = 0) and for zero inclination

(_2 = 0). This feature of the transformation will be important in later

analysis.

If one denotes a general canonical set of variables by w, then

the equations of motion take the form (see Eq. (II-6)):

= ¢ _-- _C(w,c) (Ili-6)
o 5_

with w = [_1 _ the generalized coordinates
the associated momenta

where for the artificial Earth satellite problem the Hamlltonian is

written as

2

JC(w,e) = - _ + e 3C(1)(w) + e 2 _(2) (w) (III-7)

2L 2 (w)

The oblateness coefficient J2 has been taken as the small parameter

for convenience. Since all of the higher harmonics in the expansion for

are of at least O(J_), one can represent their
the Earth's field

2
contribution as an e term (Eq. (II-4)).

Now, apply a stationary canonical transformation to define a new

set of variables w':

(1) (2)

a = 5' - e D_, (_',a) - C2 DR, (_',_)

(1) (2)

= _' + ¢ D_ (_,,_) + 2D_ (_, _)

(III-8)

which has been truncated with the second order terms. The D (i) are the

"generating functions" of the canonical transformation. The new
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Hamiltonian is then

_'(w',e) =3C(w,_) = . _2 +
2L2

2J_2) (el, (i) (1)+ + _, D_, _Ca,

2L 4 +

i ( (1) (1) \ I_(l_ i ,, D_, _,

(l) (l) (l) (l)_- ,._,_,_, D_, + _, _,_, _,)L 3

_(1)

+ e3f(w',e)

(III-9)

All functions in Eq. (III-9) are to be evaluated at w'. Choose

_(I)(_,_,) and _(2)(_,_,) so that _'(w') contains no short period

terms except in f(w',£). This requirement is defined by

b
[3C'(w',O - e3f(w',e) j" = 0 (llI-lO)

with _' the Delaunay variable conjugate to L' = L(w') . The Poisson

bracket

[A,B] = A ,B_, - A,B_, = Aw,¢oB_,

is easily shown to be invariant under a canonlcal transformation.

particular

D(1) ] b D (i)[L', = _--_--p---

(III-ll)

In

(III-12)

then if one writes

3C (i) (w') = _(i)(w,) + _(i)(w,)

with _(1)(w') = av 3c(i)(w ')
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one chooses D (1) (w')

This defines _(Z)(w')

such that

2 (i)
E-- b D _ (1)

L3 _ = - (Ill-13)

uniquely up to an additive function of the

Delaunay variables other than _' . It is then convenient to choose

D (1) to be identical with Brouwer's S(1)(L',G',H,_,g, --) expressed

as S(1)(_,_'). Note that the function S (1) is non-singular for zero

eccentricity and/or inclination and is a function (as Brouwer writes it)

of both L,G explicitly and implicitly through e and f, the true

anomaly. When computing the required partial derivatives for _ and g

short period variations, the singularity for zero eccentricity, for

example, arises in the following way

_S (I) /_S(1)_ ( G'2 _ _S (1)\ /expl ÷
(zn-14)

- -
expl.

1
As shown in Ref. i0, no -- terms arise in the case of the Hill

e t

variables; however, zero incllnatlon singularities still exist. That

no singularities occur for the Poincar_ variables can readily be

demonstrated. The argument is given for the varlahle _ ; similar

arguments apply to the other variables. The function S (I) is given

expllcitly as S(1)(e',f',g',G',H ') so S (I) depends on L' also

through e' and f' . According to the yon Zeipel procedure the first

order short-period variations of k are given by
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as (1)
5X 1 =

(n1-1s)

which then can be written as (dropping the primes for convenience)

8s(I) /bs(1)h be bS(I) bO bS(I) bH bS(I)

with

b_(1) {b_(1)\ b_(1)

I} = (l - e2) ½

So

+ sin 4xpl,
2 ½

where [22]I ff _i+ nle = I - I L-_
(III-17a)

then

_L - eL = eL

= q(q - l)(q + I) = eq (IIl-17b)
eL(q + i) L(_ + I)

The derivatives with respect to e and f explicitly introduce no

singularities and neither do the last two terms of Eq. (IIl-17a). Thus

5_i is well-behaved as e(and i) _ 0 .

Next, one can show that the second order long-perlod Hamiltonian is

independent of the particular canonical variables used and, furthermore,

that the second order generating function D (2) is non-singular for

zero eccentricity and/or inclination. Recall that the function D (2)

is chosen so as to cancel all second order short-period terms of the
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: llamiltoniano In order to obtain the desired results, note that

is an Invarlant for canonical variables°

and

Furthermore,

(2) (2) b _ (2)

_'_a' -_'_' --_'

L (1) (1)\ (i))2

(III-18)

(111-19)

(III-20)

One can rewrite (from Eq. (Ill-9))

(i) (i) (i) (i)

- L, sa,a, s_, + _,s_,_,s_,

as follows (where _,_ are understood to be the primed variables)

(1) (i) (1) (i) (1) (i) (1) (I)

1 L s_a s_ +1_s_ sg-L_s_ sg +_s_ sg =-_. _-

l( i_ _)/(1)°)\ 1 (i)(1) 1 (i)(1)

i / (i)(1)\] (1)_{ / (i) (1)_l(1)

[ (1) (1) ) (1)i / (i)" (i) (i) 1 - S_ S~

(111-21)
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then also

/ (1) (1)_ /

/ (i) (1)_ / (1)

(1)

sa

(1)

(i)

(Iil-22)

Thus it can be seen that Eq. (III-22) cancels the last two terms of

Eq. (III-21). The second order part of the Hamiltonlan (III-9)

consequently is given by

2 i-X2) (i),s(i) .p__ 3 _,(i) (i),s(i)
E + + L, 3 2 2 2L '3

/ (1) ]
I

2 (2)
--_-- D ,The only term of Eq. (III-23) apart from that depends on the

particular canonical variables used is - ½ _T _SCl, S_, ) , which is

necessarily short period, and D (2) , of course, is chosen so that the

2 (2)

term _ _, cancels all short-period terms.
L ,3

From this invariance property of the terms in Eq. (III-23) one

deduces that the difference between the second order generating

functions D (2) of two different sets of canonical variables, such as

any arbitrary set w and the Delaunay set y for example,.will be given

by

/ el)\ ,.,3 f el) cl) L ,3
D (2)

- S(2) = 2--- _ _S, S_, )- 2----_ _SQ, S_ / + arbitrary long(ill_24)period term
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Equation (III-24) gives a convenient algorithm for computing the

generating function E (2) for any set of canonical variables. In

order to assure that all of the functions arising in the error hound

determination remain bounded, one must establish that D (2) contains

no singularities. This may be done utilizing the known results of

Izsak (Ref. 9), Brouwer (Ref. 3) and Kozat (Ref. 4).

2 component ofIn Kozai's paper, the expression given for the J2

the function S (2) shows the factor 1/e for the trigonometric

arguments sin f, sin (f + 2g), sin (3f + 2g), sin (3f + 4g) and

sin (Sf + 4g). The appearance of this factor is unnecessary and a

suitable rearrangement of terms eliminates it. Such rearrangement

will be shown explicitly here for the coefficient of sin f; the other

terms can be treated similarly. The coefficient of sin f as given by

Kozat is (omitting a nonsingular multiplying factor):

le [9(11-

(3 + 2) + 4(53 _ 130 e 2 - 11 O4)1

30 @2 + 27 @4) _ 8 2(17 _ 38 @2 + 11 e 4) - 4 _3(1 - 3 e2) 2 ×

(zii-25)

H

where O = _ = cos i

Equation (III-25) can be rewritten as

le [99 - 270 O2 + 243 e 4 - 136 + 304 e 2 - 88 e 4 - 4_3(1 - 3 e2)2(3 + 2)

+ 53 - 130 O2 - 11 O4 - 2e2(121 - 282 e 2 + 33 04 ) + e4(53 - 13 02 - 11 0_]

or dropping the e 2 and e 4 terms and combining:

[4 - 3_ 3 - 5]
4(1 - 3 02) 2
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Now, this can be rewritten as follows:

4 - 3_ 2 - 5 = _ [4
e e

3
+ q + 4q 2 + 4q + 4]

3
(I - q)(l + q) [q4 + q + 4q 2 + 4 n + 4]

e(l + q)

e r q3Ln 4 + + 4n 2 + 4q + 4] (III-26)

which remains bounded as e _ 0 . In a similar manner the other

expressions given by Kozai (for higher order harmonics JN ) may be

rearranged and thus it can be shown that S (2) contains no i/e factors.

Of the terms on the right-hand side of Eq. (lii-24), the first is

known to be bounded (III-17 a,b); the second can be shown to be bounded

by the above technique of rearranging.

The (new) canonical variables w' satisfy the differential

equations

w' = ¢o 3_ '(w''e) (III-27)

where one can write the Hamiltonian in the form

2 62K(2)_'(w',_) =- _ + _ _(1)(w') + (w') + _3s(w',c) (In-28)
2L'2 (w ' )

an analytic function of the variables w' and the small parameter 6 .

Define next a transformation (canonical) to the "secular" variables

w" by the truncated expressions

a" = a' - _ s_,,(_",_')
P (in-29)

S*
_" = _' + c _,(_",a')
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where t S* is chosen so as to cancel the long-period part of the

Hamiltonian (except near critical inclination), Then S_,, and S_,

give the first order long-period variations of _ and _ i.e,:

2_ 2_

2-_ g,, dg' = _ _, dg' = 0 (III-30)

0 0

The governing differential equations for w" become then

w" = ¢o l_C_ '' (w",¢) + £3 ,_,,(w,,,_)l (III-31)

and the solution can be written in the form

(2)

(i) (2)

= _" + eS_, (_",a') + CS_ (_',a) + ¢2D& (_',a)

(III-32)

where _' = 5" - _S;,, (_",_')

_' = _" + es_, (_",_')

In the definitions of what constituted long-period and/or short-period

variations, the Delaunay variables were used explicitly (see Eqs. (III-30)

and (III-lO)). If the von Zeipel technique is carried out for the

Delaunay variables, then it is found that P"( _ _") are constants, the

"secular" Hamiltonian is a function of P" only and the coordinates

Q"(m _') have constant rates. If one is dealing in any ether canonical

variables, for example the Poincare / set x, then x" are defined to be

the same functions of y" as x are of y.

t
The function S* can be chosen to be identical to BrouWer's long-

period generating function considered as a function of w (see Ref. I0).
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In this section it has been established that the generating functions of

transformations (III-8) and (III-29) and their partial derivatives are

bounded. Note that Bqs. (III-8) constitute transcendental equations for

w t which may be written in the form

From the general bounds on w one has

(III-33)

I_l < B (III-34)

The functions _i(_',_) depend on trigonometric functions of _ •

Suppose now that B is bounded within some region R , and specifically,

that _ is bounded away from the boundary of R by at least _A/1-eK

where A and K are defined by

1_2(8,a) I <__A

and l_2(_i,a) - _2(_j,a) l <__ K IB i - _jl for all _i,_ j

(III-35)

in R

Assume further that eK < 1 ; this in effect imposes a restriction on

how close the energy and angular momentum may be to zero. Now assume the

following iterative algorithm for computing the primed variables _' :

, = £2(B_,a)Bn+ 1 8 + c

A

B_ = 8

(III-36)

with

then

I_ - 8_1 _ _KIS{ - 81,

I_ - 8_1 _ eEl_ - _{1,

IB_- __l I _ _KIs__1 - __21

since 8{ is also in R

(III-37)

since _ is also in R
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and

or

1_3- _1<_I_ - _;I + I_ - _l < I_i - _1(1 + cK+ (cK__)

n-I

I_;_- _l <_.I_;. - _1 _ (oK)j
j=o

n-1

I_-_l_<_ _ (oK)j
j=o

(izi-38)

Taking the limit

n_ _ n--_

n-1

(EK) j

j--o
(III-39)

lim I_ - _1 _ cA/I-EK
n-_

A similar argument can be applied to the long-period transformation (IIl-

29) to deduce that _" will remain (sufficiently) close to _' . As a

consequence of the above, one has

la' - czl= _l._l(_',cOI <_._1 (III-40)

Also, note that the iterative procedure converges, i.e.

[_n+l - _n[ _ _A(_K)n
(III-41)

I I

so that as n _ -- , ]_' - _[ _ 0 if EK < i
o

n+l
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IV• ERROR BOUNDS FOR THE AXISYMMETRIC PROBLEM

All of the information necessary to derive formal error bounds has

been given in Sections II and III. One can proceed then in a straight-

forward manner to derive the bounds utilizing known theorems from the

theory of differential equations. However, it turns out that because of

the nature of the differential equations, the bounds obtainable in this

manner prove to be unsatisfactory for time intervals of the order of

1/c . This fact is a natural consequence of the existence of a rapidly

rotating phase in the governing system of differential equations;

however, since only one such phase appears in the case of satellite motion,

one can circumvent the difficulty by appealing to a known integral of the

motion. In this section the conventional method of error analysis will

be presented first and then the extension to the large time intervals

will be given for the problem with an axisymmetric potential.

A. BOUNDS FOR SMALLTIME INTERVALS

In order to simplify the following presentation, some new notation

will be introduced at this point• If A and B denote n-dimensional

vectors then JA-B I will denote the matrix of absolute values of the

component differences of A and B i.e.:

• .

IA-BI _ JA1-Bll (IV-l)

IA2-B2L

.IAn-Bnl
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The governing differential equations for the "secular" variabIes were

given as (F-4. (III-31))

w" = _ _ [_"(w",C) + E3_(W",E)] (IV-2)

o b_'

from which the approximate state vector w_ is defined by

w A = _ _ JC"(WA, E)o _tt

_wa

wX(0) = w"(0)

(IV-3)

For convenience, Eqs. (IV-2) and (IV-3) can be rewritten in the form

_" = h(w",¢) + ¢3_(w",c)

(IV-4)
tt

",, = A(WA, E)wA

Since the functions _ JC" and _ _" satisfy a Lipschltz

_,, ~.8wA
condition on the domain of definition of w(t), it follows that

I! tf
]A (W",E) - A(WA, E) ] __ k]w" - WA[ A kin" (IV-S)

where k is an n × n matrix if m", the matrix of absolute values of

wt
the component differences of w" - WA, is n X i . The particular form

of Eq. (IV-5) was chosen since a vector function, say A (w"), satisfies

a Lipschitz condition on w" if and only if each of its components

Ai(w",t) does• Since the constants may be different, the use of the

matrix of Lipschitz constants k can afford a more precise bound than
m

that usually provided by the norm I{w" - wXU .

As a consequence of (IV-5) one can immediately write

dm" < kin" + e 3 _(w",E) (IV-6)
dt ----
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where from a priori bounds on w(t)

(iv-v)

Hence

d m" - l_n" < E3W
dt -- --

(iv-s)

which is readily integrated to give

m" _ m"(0) exp _t + E3Wk__-I [exp _t - I]

(iv-9)
0<t<T , t _0

o

However, since it was assumed that wX(0) = w"(O), the initial error

m"(O) = 0 and

wv
m" = Jw" - WAI <. e3Wk__-I [exp kt - I] (IV-10)

At this point, several difficulties of (IV-IO) can be pointed out.

The bounds (IV-IO) prove to be unsatisfactory for Delaunay variables for

1
small eccentricity and�or inclination since k contains the factors --

-- e

i
and If w is taken to be the Hill set z, the zero eccentric-

sin i

ity difficulty is removed, Although the zero inclination singularity

remains, for many purposes the Hill variables are a convenient set to use

due to the relatively simple expressions for the periodic variations of

the in-plane coordinates (see Vagners, Ref. 10). Taking w to be the

Polncsre !set x, satisfactory behavior is assured for both zero eccentric-

ity and inclination. A much more serious difficulty occurs if one wishes

to examine the bounds for time intervals of the order 1/¢ . Expansion

of (IV-lO) yields, for "small" time intervals

oo kJ-1 tj

E3Wk_ -1 [exp kt - I] = e3Wt + £3W _ jr. (IV-11)

j =2
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However, for time intervals of order l/e , the bound (IV-IO) becomes

very large i.e., behaves like exp 1/e .

Assuming now that m" is at most O(E)(l.e., bound (IV-IO) is

satisfactory) then one can complete the analysis by including the periodic

terms. If this is done, the total approximate solution of interest here

is written as

'w_ ( ") (IV-12)w c = + eT_w A

with _(wX) giving the first order periodic parts of w as defined by

eqs. (III-8) and (III-29) with the generating functions considered as

functions of the double primed variables. Equations (III-32) can be

written in the form

w = w" + er(w") + E2_(W",C) (IV-13)

then

Jw- Wcl = lw"+ _(w") + 2_(w",_)- w_ - _(w_)ls
(IV-14)

lw"- _I + _Ir(w")- r(w_)l+ _21_(w",_)l

Since _[y(w") - Z(w_) I gives the error in the first order periodic

terms of the solution and m" is 0(_), then the term contributes error

of second order. Thus the effect of the last two terms of (IV-14) can be

combined into one second order term ¢2Z to account for all periodic

errors of the solution. The error bound for "smell" time intervals,

assuming exact initial conditions, assumes the form

lw- wcl _ e3wk_-l [exp_t - I]+ _2Z (IV-lS)

or, effectively,

e3Wt + g2Z (IV-16)
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The difficulty of the above bounds for t ~ I/e is a direct

consequence of the existence of a rapidly rotating phase in the dynamical

system. In the treatment of systems with rapidly rotating phases by the

method of averaging, the governing equations for these phases are

considered separately. The general result obtained then is that the error

is 0(e) for t ~ i/6 rather than 0(6 2) as one would expect from the

truncations performed i.e., truncation of 0(6 2 ) periodic and 0(e 3)

secular te_s. In the following, such separation will be affected and,

by appealing to kno_ integrals, the bounds will be derived for all

variables to 0(e 2) for t ~ i/6 .

B. EXTENDED TI_ E_OR BOUNDS

• / .
The following analysis will be carried out for the Polncare varlables

explicitly utilizing known results for the Delaunay variables and their

rates. The secuIar Hamiltonian was defined from the yon Zeipel procedure

as being a function of the Delaunay momenta P" only (to second order),

hence in the Poincare/variables one writes

2 _ (1)ix") 2_ (2) e3_"(x",e) = - --b..__ + e + (x") - _(x",£) (IV-17)

2L "2

where _ (i) _ _ 3 - 1 H and G functions of x

4L"3G ''3 _ '

(N. (III-5)) and _ (2) is F** of Brouwer considered as a function

of x" . (Explicit expressions for _ (2) in terms of Hill variables

for any Jn may be found in Ref. IO, which could then be transfo_ed to

i
Poincare variables if necessary.) Equation (IV-17) can be rewritten more

conveniently as

2

_" (x",e) = - -P----- + £ _(x",e) - eS_(x",e) (IV-18)

2L ''2
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where

= ÷ ÷
/

The equations for the Poincare variable rates become

2

_" = _ + e _ _(x",e) - e2_(x",e)]
L,,3

(IV-19)

(IV-20)

contaln k" and

3 _ (x" _ (1) _ (2)L" = ¢ ,e) since and
oX

x R = e¢ ° _ [._(x",e) - e2_(x",e)]

do not

(IV-21)

wi th

II
x R =

_2

, ¢ a 4 X 4 matrix.
o

The approximate variables x A are defined by Eqs. (IV-20) and (IV-21)

with q>(x",_) set equal to zero and XA(0) = x"(O). Consider first the

" and " :
differential equations for _1 _1

•. _ . 3
_1 = _--_ _(x ,e) - c _ ,,

_1

"" _ _(x",c) + c 3
_1 = - _ _ _U_'

Recall that _(x",£) is given by Eq. (IV-19) so that with

(IV-22)
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a bounded quantity, one obtains

Hence

"" = N " 3

1

",, = " e3

_i - ENI_I + _i _

(IV-23)

d-7 _ + n_ = _i - ql (1V-24)

The approximate solution x_ of interest is given by _ = O; thus from

the boundedness of _ (and its partial derivatives)

Here, as well as in the following discussion, the extended time interval

will be taken as t ~ i/e so that

I _ <_;2 + _2)I _ E2Mo (IV-26)

The reader may prefer to think of the time interval as defined by

at ~ i/E where n is taken to be the (suitable) mean motion. For

mathematical convenience, the definition t - i/E will be used.

Now, rewrite Eqs. (IV-23) as a single complex equation (j _ _):

....[ .v"" "'" e3 _ J _glgl + J_l = JENI (gl + J_l ) +
_1

and the approximate equations as

glA + j nlA = j e NIA(_I A + JnlA ) (IV-28)

since

,,2 , L",_l =_l (q_ + _l ' _;_+ n;_ _)
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Difference F4so (IV-27) and (IV-28) to get

........."" "" t - j _1/_1 + J_l = JEL_I(_I + J_l ) + JCNIA(L_I + J/_l ) + ¢3 _1

(IV-29)

From Eq. (IV-26) :

_NI = 'N 1 - NIA' _ M1A(E12 + q12) _ C2,

and (IV-29) thus becomes, wlth the ald of an integrating factor,

I _d [(_1 + J_l >e-jENIAt]l --<

(IV-30)

Then, since the right hand slde of (IV-30) is bounded, it follows that

J(/_l + J_l )e-jENIAt [<--E3M3 t = _2_13 t ~ 1/E (IV-31)

but ]e-JENIAt[ = 1 so

" E2M3IZ_ 1 + j_l I _ (IV-32)

t! v,
From slmllar arguments, it follows that for _2 and _2

,, ,, E2M4IL_ 2 + J_2 1 _ , t ~ 1/E (1v-33)

Also, from the differential F,q..(IV-20)

IL" - LA] _-- le 3 / _ dt I _ ¢3M5t = E2M5 (IV-34)

The remaining coordinate k" causes some dlfflculty, since wlth

I L'' - _I known to 0(£2), a straightforward analysis of the £"

149
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_tion gives IX" - _t only to O(c) _or t ~ 1/_ . In orde_ to

obtain bounds for X" consistent with those of the other coordinates,

one must appeal to the knowl_ge of an exact integral for the axi-

symmetric problem. In effect, one can r_define the mean motion as

introduced by Brouwer (R_. 3), who wrote

2

n_---

o L,3

and hence, with _1 and _2 functions of L',G",H only

(IV-35)

_" = no[l + 611 + 6292 ] + 0(e 3)
(IV-36)

Recall that _" was defined by Eq. (IV-20), which in a more explicit

form is given by

2 3p. R

_" = 2=.-L''3 1 - e _3 klL"-i - e --4G,,4 5 _V/ - 1 - 2 _7J + e252 - e3 _

(IV-37)

where

k I _2R2 3 - 1 with G" = G"(x") and H" = H"(x")

_._"_ V}

L,3 b_ ' (2)

52 = 2 _L "W-- '

Define now a new constant

a bounded quantity

2

2_a = - _£ = - _" = --P---- [1 - eklL"-i - e25%*+ e3q_l ]
2L ''2

and a new "mean motion" by

1 3/2

(-) _n = p½ a = _ 1 - eklL"-i e 25_* + E3(pl
L,,3

(IV-38)

(IV-39)
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or expanding

2 [ 3 2 3 _. c2 3 2 .-2 3 *. ,, )]
= _ 1 - c klL"-I + klL + ¢ CPltX ,e (IV-40)

L"3 L 2 - _ -j

Thus

_" =_- _-_-- -- _ - i-2 - ---k_L"-
_,,_ _G,,_ \_/ _] 2 _ 8

(IV-41)

Again, the approximate XA is defined by (IV-41) with _--_L= 0 and

* = 0 From the exact known integral, H" = H in Eq. (IV-41) and from
_1

the definition of G":

G"= L"- _2- + _2- (iv-42)
2

then from Eqs. (IV-32) and (IV-34)

-GXI_2M.v t-IG" 1/¢ (IV-43)

so that finally

Ii
J_" - >.A[ _< _2_ 7 t ~ i/e (IV-44)

If one is interested in orbits with non-zero eccentricity and/or

inclination (i.e., e >> e, sin i >> c) then the above analysis can be

carried out analogously for the Delaunay and/or Hill variables. In

partlcular_ for the Delaunay variables, the rapid phase is Z" and an

equation similar to (IV-41) (but somewhat simpler in form) results for _".

Due to choice of g and h as the other two coordinates_ the c term

of (IV-41) is found to disappear. (Of course, the functions _2,_ $ and

are different than for the Poincar_variables).
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C. THE INITIALIZATION PROBLEM

At this point the relevance of the above results to the so-called

initialization problem may be noted. The two primary uses of an analytic

(artificial satellite) orbit theory are orbit determination by fitting

to observational data and orbit prediction from some initial state vector.

In the case of orbit determination, the mean (double primed) variables

are obtained to high accuracy by fitting to observational data. This

accuracy depends on the number and quality of the data points. In this

application, the question of initial value errors does not arise.

The initialization problem may be defined as follows: given some

initial radius and velocity vectors, compute a satellfte ephemeris for

some extended time interval via an analytic theory. The initial radius

and velocity, and hence the instantaneous elements, are assumed to be

known exactly. Analytic theories are usually formulated so that certain

constants of the solution are mean elements, for example L',G" and H

in the Brouwer theory, instead of initial values. Thus from the known

set of instantaneous elements, the mean elements must be formed by

subtracting out the periodic variations. Since one is considering a first

order theory, the mean elements thus defined will be in error by O(E2).

It can be noted here that a numerical iteration procedure has been applied

to the determining equations (Cain Ref. 15, Arsenault, et al Ref. ii)

which are written as

[ (1) (*)
Q = Q" - £LS_, (P' ,Q) + S_,, (P",Q' J

(IV-45)

• v
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Such a procedure can, of course, only remove that second order error

that arises from considering the S functions to be functions of the

instantaneous elements (P,Q), but still cannot account for the truncated

second order terms. Thus from an accuracy point of view, such iteration

3
procedures are of dubious value, since as shown by Eq. (IV-37) (with c

terms truncated) the error in k_ , or equivalently _ , will still

2
grow as e t from the zero order term. The other variables of either

x" or y" do not present any problem since their rates are either zero

or multiples of e, so that an initial value error of O(e 2) will grow

as e3t giving results consistent with the expected accuracy of the

truncated theory.

With the algorithm suggested by the analysis of subsection IV-B,

the initialization difficulty can be resolved. As noted, for all variables

except the rapidly rotating phase, the use of mean elements defined by

instantaneous value minus the periodic terms (considered as functions of

the instantaneous elements) will lead to no difficulty. The necessary

initialization procedure for kX is given by Eqs. (IV-38), (IV-39)

and (IV-41). The numerical value of _ is known exactly from instanta-

neous _C and the remaining terms of (IV-41) have at least an e multiplier.

For the Delaunay variables, one rewrites Eq. (IV-36) with n" the mean

motion defined by

= 3 + ¢2521 + 0 (3) (IV-46)n" _" = L2,_3 [I- e _ klL'-i

t
so that, with use of energy

% 2L ,3 **
The explicit expression for _* is identical to -- F [See

2L'3 _

Vagners (Ref. i0) where it is given as _ [_2 + F23 ].
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L' 3 _ + 52 - _ klL + c terms (IV-47)
t=0

in which in the 62 terms one replaces the double primed variables with

the instantaneous elements. The new mean motion n is again given by

(IV-38) and (IV-39). All terms appearing in the brackets of (IV-47) are

functions already known from the general theory.
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V. THE ASYMMETRIC POTENTIAL FIELD

If one includes the longitude dependent terms (tessersl harmonics)

in the gravitational potential, some modifications to the analysis of

Section IV are necessary. The additional terms in the I_miltonlan are

 n.m cos -
n=2 m=O

where J
n,m

Xn,m are constants with Jn,m ~ O(J_)

= h + tan-l(cos i tan u) - _t

the angular velocity of the Earth

(v-i)

(Time is measured from an instant when the right ascension of Greenwich

T will be considered first as a function of the

3C T (L,G,H,_,g,h - _t). To remove the explicit time

is zero.)

In this discussion,

Delaunay variables

h* = h - _ t conjugate
@

dependence, define a new canonical variable as

to H with the associated Hamiltonlan given by

K = _" _H (V-2)

where _ now is the original Hamiltonlan including both zonal and tesseral

harmonic effects. Since time is not present explicitly in K, it is a

constant of the motion.

Following the yon Zelpel procedure, "remove" all of the periodic parts

of the extended Hamiltonian K via a suitable generating function,

defined here up to second order (since 3CT is second order in E) so

that the new variables become
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_S (1) 2 c_S (2) 5ST

L=L' + ¢_-%--_---+ ¢ _%-T--+ --_-7

bs (1) ¢2 bs(_) bST
I' = _ + 6 _ + _ + bL---r (V-3)

_S T
H=H'+--

5h*

Equations similar to those above hold for the other variables. Note that

H now contains fluctuations but that these are of second order. As

before, S (I) and S (2) are chosen to cancel all zonal short-perlod

terms up to, end including, second order. Thus one is left with (omitting

the 63 function for the time being)

2 2 _S T _S T

K' = - -Z-- + 6 _I + e2_ (2) - _H' + _Z_ _ - _,_ (V-4)
2L '2 L '3 _" - _ _h*

where

Jc,"r=_÷_T : _ _ X Ak2klm(a'e,i)c°S(kl£ ÷ k2 g ÷ mh" ÷ phase)

k 2 k 1 m (V-5)

in which % includes all terms with k 1 _ 0, the short-period part of

_T ' and _T gives the daily fluctuations from h* , k 1 = 0 . Choose

S T so that

2 bsz bsz
- --P-- + _ = - _cT (v-6)L'3 _ % _h*

Strictly speaking, (V-6) should be written as

2 bS T bS T _") bS T
- --_---- + --+ (_- --=

L,3 d£ _6_ _h* _h*'

(v-7)

- _T(L',G',H',£,g,h*) - _ (L",O",H",g',h *t)

however,(V-6) is accurate to 0(62 ) since _' is 0(6). Solving by
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2

L _

m Aklk2 m *'

k 2 k I m

+ phase) (V-8)

In Eq. (V-8) (as well as (V-6)) one can use the primed variables or

instantaneous variables with 0(e 3) error. Clearly, there exist orbits

for which n' is commensurable with _ and hence a particular

(kln' - m_) goes to zero. These are the so-called tesseral resonance

cases and will not be considered here. Introduction of

manner leaves

S T in the above

K" = - p" + c + - w - e _ (V-9)

2L ,2

where the 6 3 function is now included, and is different from the 6 3

function of _' of the axlsymmetric problem.

The instantaneous elements may be written as a sum of the "secular"

(double-primed) part and the periodic parts. In particular, with H" a

constant,

H = _' + HS. p + HM.p (V-IO)

From (V-3) and (V-6) it follows that

_s T
_" =%.+% --'-- bz

(V-ll)

thus, from (V-8)

bS T

k 2 k I m

kln'

kln'-m _ Aklk2 m cos(kl_' + k2g' + mh*' + phase)(V-12)

Combining (V-12) with (V-5) one obtains
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k 2 k I

(V-13)

= - kln,_'--m_ + k2g' + mh + phase)

k 2 k I m

The constancy of

that

K and _C" to 2nd order implies (because of (V-ll))

bST / b_t- _ + n' -_ = tesseral fluctuation of ;_C= _-_ u (V-14)

A

where .l _t dt denotes a specific second order approximation to the

A
indefinite integral, considering only _' and h* as time varying.

This may be checked by forming

k 2 k I m

If one assumes that, to the order necessary here,

kl_' + mh _ [kln' + m_]t (V-16)

then conclusion (V-14) follows.

For discussion of the error bounds, the formalism of Section IV can

be retained to a large extent. Due to the absence of secular tesseral

terms, only the _ function of the secular Hamlltonlan will change and

hence the bound on that term will be different. It follows then, that

the error bounds on x", wlth the exception of _", are derived in

exactly the same manner as before wlth different values for the constants

Mi The derivation of an error bound on _" is not as simple as before,

since for the asymmetrical problem the two separate integrals of energy
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: and polar component of angular momentum no longer exist.

From the extended Hamiltonlan (V-14) one finds

_"' _ t 1 _ _% r /,,,,',_ _"-I=,,3 '-l- -
(v-17)

+ c252 ] - 63 _L _,

2

The object again is to obtain an expression for _L,3 (1 - • _3 klL,-1 )

accurate up to, and including, second order. Since K is a constant

of the motion,

so that

K = 3£- tO H -- K" = 3£"- co H" (V-18)

_' = 3£- _e(H - a") (V-19)

From general theory for time dependent Hamiltonians

b3£
d-_ = _ (V-20)

and

3£ ra3£
-j_ dt = constant (V-21)

The constant is related to quantity 3£", which is also a constant to

second order as defined by the von Zeipel procedure. In fact, if one

chooses a particular approximate evaluation of the indefinite integral,

as in (V.-14), then

A _(_ dt (V-22)JC" = 3C- _-_

Note that as defined by (V-19), 3C" is known only to second order with

third order secular terms (from H"). After times of order 1/e this

constitutes an error in 3£" of second order secular and thus finally to
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first order in k" if L' is defined through _". Using the relation

(V-22) avoids this difficulty, since it turns out that the third order

evaluation of the specific integral J_ _/_t dt yields terms that are

still third order after t ~ 1/¢, with tesseral resonance situations still

ruled out. This may be verified by considering the first order variations

of the variables in _t and noting that m _ 0 in (V-15).

Next, define as before (with _' defined by (V-22))

2_a = - _C" (V-23)

and the mean motion by

so that

2

_ = _ [1 _ e 3 e2 3 2 ,-2L'3 2 klL'-i + 8 klL

and finally, the _" equation

2 It"
_."=?-e -_-- 3 _R*- 5 g,_ - 1-2

L' 3 4G,,4

(V-24)

- 62 3 _,] 3 _. ,, .
j + e _l_X ,e_ (v-25)

-e 52+ _ - _k L'-

-- e + ¢p (V-26)

The approximate solution

functions equal to zero.

follows as before.

The algorithm for computing the correct initial value of the mean

motion n now involves the evaluation of the integral f _/_t dt
@

A
This may be done by a suitable expansion on eccentricity; one such

evaluation is given in the Appendix.

t|
_A is again defined by (V-26) with the q)*

The argument for obtaining the error estimate
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VI. NUMERICAL V_IF ICATION

Equation (V-26) then provides an algorithm for computing the correct

initial conditions (to the order of accuracy demanded by the general

solution) in the case when the total potential of the Earth is taken into

account. The algorithm includes the (suitable) evaluation of the

indefinite integral _-_dt . It Is of interest to obtain numerical

verification of the general accuracy theory of Section V . The explicit
bT

expression for -_ dt has been derived earlier by Vagners (Ref. 16),

and was subsequently incorporated into the Lockheed Closed Form Orbit

Determination Program (Ref. 17). This program utilizes a complete first

order analytic solution that is equivalent to the extended Br0uwer solution.

(The extended Brouwer solution is taken to include J2 short-period,

_2 and general JN long-period, Jn,m medium period (daily) effects and

all second order secular effects not accounting for tesseral resonances

_.f. Giacaglla (Ref. 18), and Garflnkel (Ref. 19).) The Lockheed solution

is due to Small (Ref. 12), and Vagners (Ref. 16).

Since the error in the mean anomaly (or equivalently _") is directly

related to In-track position error_ the simplest test of overall accuracy

is to compare the in-track, cross-track and radial positions as predicted

by the analytic solution and numerical integration of coordinates. Since

the time intervals of interest are of the order I/e , the comparison was

performed over a seven day interval. The test orbit was of 2000 nautical

mile altitude and circular. Such an orbit, not including the results

of Section V (roughly a 200 foot error in the seml-major axls_ resulted

in a 200 mile in-track error t. After "tuning" the mean motion with the

t The comparison study was carried out to determine the effects of inclu-

sio n (or omissio_ of tesseral harmonic short period terms in the semi-

major axis. The energy had already been incorporated in the formulation of

the axisymmetrlc problem.
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energy, the secular error was decreased to 900 feet, which is an order c

decrease as demonstrated by the theory of Section V. The comparison is

shown in Fig. 1, where it can be seen that the periodic errors and the

secular error are now of the same order of magnitude i.e., 0(_2). The

cross-track and radial errors are periodic and have amplitudes of _ 120

feet and ± 350 feet, respectively, for the comparison orbit.
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VII. CONCLUDING REMARKS

In the previous sections error bounds were derived specifically for

/
the Brouwer procedure using the Potncare variables. From the general

theory, an algorithm was derived for the correct computation of the

initial conditions for the Brouwer theory. It is then of interest to

note the relevance of the results of this paper to other orbit theories,

and also to present the computation of coordinates from the Poincare

elements.

Insofar as the first item is concerned, exactly equivalent errors are

to be expected from any complete first order theory provided that care is

taken in establishing the correct mean elements for that theory. A

complete first order theory is defined as one that includes the first

order periodic and second order secular influences of any harmonic. This

distinction is necessary if one wishes to compare theories for prediction

of orbits from a fit to observational data or for prediction from an

initial state vector, i.e. the initial value problem. For example, the

theories of Kyner (Ref. i), Petty and Breakwell (Ref. 21), including s

time equation carried only to first order secular terms, would give

satisfactory results if applied to orbit prediction from a fit to data.

However, for the initial value problem, these theories would prove

unsatisfactory (giving 6 errors for time t ~ I/E). The latter

difficulty could be remedied if the time equation (or its equivalent)

would be carried out to include second order secular effects and an

energy algorithm used to calibrate the mean motion. The theory of Small

(Ref. 12, Ref. 16) is a complete first order theory and includes the

correct algorithm for computation of initial conditions.
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With more or less difficulty, any theory appearing in the literature

may be analyzed in s manner analogous to that given in this paper and

equivalent results obtained. In each case, the energy will have to be

used to establish the mean motion (or the constant rate of the fast

variable) to second order, unless complete second order periodic

expressions for the semi-major axis are available. The questions of

error bounds become more difficult if one admits orbits at critical

inclination and/or orbits at resonance with the tesseral harmonics. Such

orbits are excluded from the general class investigated in this report

and remain the topic of future investigations.

The last point to consider is the computation of the coordinates

from the Poincare elements in which most of the theory of this paper was

developed. In terms of conventional orbit elements,

k = M + _ + _ L = _V_-

_ = [2_(1- i_-_2) ]½eos(_+_)

q2 = [2_p (l- cosi)]½cos

where M is the mean anomaly and

_1 = [2 _ (1 -V_)]½sin(_ + _)

_2 = [2V_-p_p(I - cos i)]½sin a

p = a(l - e2). The remaining elements

were defined in Section III, Eq. (IIl-l).

find k,_l,ql,_2,q 2 and L, then compute

e cos(w + a) = _-_ 1

An iterative procedure yields

Known the time

½

2 2]½g14_._ ql

_, e cos f, e sin f defined by

t one can

(VII-2)
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-i
tan (e sin f) _-2--(e sin f)

n n

nn = 2 + (vzz-3)
1 +l_'_-_-e 2 + (e cos f) 1 + (e cos f)

n n

(e cos f)n+l = (e cos(_ + _)) cos (_ + _n) + (e sin(u + fl))sin(k + L_n)

(e sin f)n+l = (e cos(u + n)) sin (X + L_n) - (e sin(_ + n))cos( k + L_n)

2 2

where _ = 1 _1 + _1
2L

So that the radius is given by

L5/2(I _ e 2)
r (VII-4)

D

where ½

_1 "ql
D = kt L _ + 1 - [_1 cos(_ + L_) + _1 sin(_ + _)]

and the cartesian coordinates x,y,z by

x -
L3/2(1 _ e2) _

2D

2 2 2

[(2L - _i - _I - _2 ) cos ()_ + LI) + _2_2 sin ()_ + LI)]

L3/2(1- e2) } 2 2 2

Y 2D [_2_ 2 cos(k + L_ + (2L - _1 - _1 - _2 ) sin (_ + _)]

L3/2(1 _ e 2)

2D
2_ 2 ½

(4L- 2_21 - 2_ 2 - _2 _2 ) [_2 sin(k + L_) - _2 cos (_+A)]
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APPENDIX

Explicit Evaluation of -_--dt

For the evaluation of the initial value problem, the indefinite

f, Tintegral _ dt must be evaluated or, equivalently, the generating

function S T must be found. It will be assumed here that the lntegrand

is given by (V-15) and the integration will be carried out in conventional

variables.

The following expressions prove useful:

V

pro(sin _) cosm_ _ (2n-2_): i) _ n-_-2_ n-urn-2 _= n , (n-m-2_) ! (_) (- sin sin (A-l)

where

%2 =

n-m

--_ for n-m even

n-m-i
for n-m odd

2

cos m(_ - kn,m )

m
m-s s s

: 7(:)co o  nooo  
cosm_

s=O

[Yl cos m(h* - k*) + _2 sin re(h* - k*)]

(- i)_ x

(A-2)

where

s/2 if s is even;

s + 1
if s is odd;

2

IF1 = i, T"2 = 0

[i = O, [2 = 1

o + kn,m with (_o the right ascension of

Greenwich at a base time t
o
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n+l

n+l
r

p---O

P

(n+l eP 1 7
p / 2_ 1 - e2)p+l an+l

q=0

cos(p - 2q)(u - w) (A-3)

and

sinJu cosku =

j k

c---O d---O

[51 cos(j + k - 2c - 2d)u

+ 5 2 sin(j + k - 2c - 2d)u] (A-4)

where
f

/ J + c + j/2 if j is even; 51 = 1, 5 2 = 0

l j + c + j + 1 if j is odd; 51 = 0, 5 2 = 1
2

fAAt this point, the assumptions under which _- dt will be

integrated may be stated. The inclination angle 1 and the eccentricity

e will be taken as constants. Since no appreciable difficulty is incurred

thereby, the following will be adopted

tO = W + tJU
0

h* = _ + _'u - w t
o

with 3 ( ____._> 2 (A-5)to' = _ £ (2 - 5/2 sin2i)

_' = - -- • cos i

The last item is the central angle-time relationship. Since the integrand

is (essentially) now a function of u, one would prefer to integrate

with respect to u. To the first approximation

du = n dt + 0(ee 2) (A-6)
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so that the contribution of the J term is given by
ngm

n-m-2_+s m-sEn, m sin u cos u [_i sin m(h* - _*) - _2 cos m(h* - _*)] ×

cos(p - 2q)(u - _) du

with%

E
n2m

m_ Rn v n+l p m

_ 1 _ _ _ _, .(2n_2_) ! 1- n,oan+io, _o-m-_-_,_(:)(°;)×
n 2 n.

_=0 p=O q=O s=O

(A-7)

(_)(:)(-l)_+__.p_._e_ n-m-_e2)p+l × cosSi sin i

or with h h* *

E*n,m ;cos(p - 2q)(u - co)[_ I sin mh - Y2 cos mh][51 cos(j + k - 2c - 2d)u

÷ b 2 sin(j + k - 2c - 2d)u]du

with j k

n,m n,m 2J+k
c=O d=O

Then let

Bo = - COo(p - 2q)

B 1 = (1 - _')(p - 2q)

B 2 = j + k - 2c - 2d

B 3 = m(_ o - X.*)

B 4 =- m(-_' +'_)

so that the integrand becomes

If one prefers, the F and

used instead.

G functions of Kaula, Ref. 22, may be
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c°s(B o + BlU)[51 cos B2u + 52 sin B2u][_l sin(B3 + B4u)

-_2cos(B 3 + B4u)]du

The following non-zero combinations arise in the above integral:

11 = /c°s(B o + Blu) cos B2u sin(B3 + B4u)du

12 = - / cos(B + BlU) cos B2u cos(B 3 + B4u)duo

13 = / cos(B + BlU) sin B2u sin(B3 + B4u)duo

14 = - / cos(B + BlU) sin B2u cos(B 2 + B4u)duo

(A-8)

(A-9)

which can all be evaluated explicitly to give

+BI-B4-B 2

+ 1 cos [B3+Bo+ (BI+B4_B2) u ] B4 +_1-_2 c°s [ B3+B°+ (B2+B4+B1) u ] I
B2-B4-B 1

11 1 sin[Bo_B3+(B2_B4+BI)U] BI-B4-B2I2= -_ B2_B4+B1 1 sin[B3_Bo+(B2+B4.B1)u]

- I'---"L_sln[B3+Bo+(BI+B4_B2)u] 1 I
B2-B4-B 1 stn[B3+Bo÷(BI+B2+B4)u]

B4+BI+B 2

13 -- _ BI-B4-B 2 sin[B3"Bo+(B2+B4-BI)u] +l'----_sin[Bo.B3+(B2+Bi_B4)u]
B2-B4+B I

1

- B2_B4_BI sin[Bo+B3+(BI+B4_B2)u ] 1 sin[B3+Bo+(B2+B4+BI)U]
B4+BI+B 2

i I l----!'_c°s[B°-B3+(B2+Bi-B4)u] + B4-B2+B 114 = - _ B4-BI-B 2 l----'!_cos[Bo+S3+(Bl+B4-B2)u]+
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1 c°s [ B3+B°+ (B2+B4+B1) u ] 11 cos [B3_Bo+ (B2 +B4_BI) u ] B4+BI+B2+ BI-B4-B2

In the expressions of Ref. 16_ it was assumed that i,_,_ and r

were constants and in the test case the orbit was circular. The exten-

sions of the above development cause no difficulty other than increasing

the number of terms. However_ any improvement of accuracy for non-zero

eccentricity orbits is difficult to assess due to the approximation of

22
Eq. (A-6). In order to define the error remaining as of order e g

one must include the e terms in (A-6).
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An Investigation of High Eccentricity

Orbits About Mars •

by J. V. Breakwell and R. D. Hensley

Stanford University

Stanford, California

1167-293'77
SUMMARY

Possible long-period fluctuations in the radius of pericenter, rp, of

an orbiter of Mars due to the solar gravitational field are investigated.

The study is restricted to a "region of interest" defined by 6000 km > r >
-- p --

4000 km. Eleven different "critical" orbital inclinations are found for

which the long-period fluctuations in eccentricity and inclination contain

terms of vanishing frequency suggesting very large amplitudes. A closer anal-

ysis of these resonant situations near a critical inclination is accomplished

by transforming the Hamiltonian into that of a simple pendulum problem. Maxi-

mum variations in the eccentricity, and hence radius of pericenter, are then

obtained and curves of maximum change in radius of pericenter versus eccen-

tricity plotted.

I. INTRODUCTION

For many of the problems in space-flight mechanics it is necessary to

find an orbit which satisfies certain boundary or mission conditions. In this

investigation, which considers the problem of an artificial satellite about

the planet Mars, the size and shape of the orbit are dictated by two practical

considerations: (1) the savings in fuel obtained by transferring from an in-

terplanetary trajectory to an elliptical orbit and (2) the desire to pass as

close as possible to the surface of the planet. This last consideration intro-

duces the notion of the radius of pericenter r which, with the eccentricity
P

*NASA Grant NsG-133-61
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e, will determine the size and shape of any orbit. The mission requirements

can be expressed in terms of these two parameters, e.g., the orbits must lie

in a range of interest for which e _ 0.5 and 4000 km _ r _ 6000 km (see Fig.
-- p --

1). Of major concern to the mission planner is the variation of rp, over a

long period of time, caused by a fluctuation in e.

This study investigates the possible long-period fluctuations in the

radius of pertcenter of an orbiter of Mars due to the solar gravitational

field. For those orbits which satisfy the mission requirements the "secular"

rotations of the orbital plane and the major-axis orientation (argument of

pertcenter _) due to Mars' oblateness dominate those "due to the solar field.

On the other hand, these oblateness secular rotations are substantially slower

than Mars' motion around the Sun. This latter consideration permits averaging

of the perturbations not only over orbital revolutions but also over the Mar-

tian year to obtain equations describing "long-period" rates of change of In-

clination I, eccentricity, longitude of the node fl, and argument of pert-

center _, the last two elements being driven mainly by oblateness. The

long-period rates of inclination and eccentricity are stnusotdal in certain

linear combinations of _ and fl leading to fluctuations in inclination and

eccentricity as sums of easily computable stnusoidal terms of known frequency.

There are 11 different "critical" orbital inclinations where the frequency of

a sinusoldal term vanishes leading to a very large amplitude.

An analysis of these resonant situations near a "critical" inclination

I is accomplished by transforming the Hamiltontan into that of a simple pen-
c

dulum problem. _1/ And, as in the pendulum analysis, it is possible to obtain
[ _

a phase-space contour describing the total ltbratton of the system which, for

this study, determines the maximum excursions of I and e near I c. Once

the maximum variation in e is known the maximum change in rp (Srp)ma x can

be calculated, for those orbits meeting the mission conditions, and curves

showing (_rp)ma x versus e plotted.

As noted above, in this study the radius of pertcenter lies in the range

4000 km < r < 6000 km
-- p
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Introducing the semimaJor axis a and the eccentricity e, a "region of

interest" is defined by

40_ 6000

This region is shown on Figure i.

II. THE DISTURBING_NCTION

In this investigation the motion of a body in the gravitational field of

the planet Mars will be studied under the assumption that the only perturbing

forces acting are the oblateness of Mars and the solar gravitational field.

Ignoring, of course, the effects of the (small) mass of the orbiting body,

then the equations of motion in a Mars-centered coordinate frame may be

written in the form

= V(R_+Rs) (1)

where r is the radius vector of the satellite, V the gradient operator

and RM,R S the potentials of Mars and the Sun respectively. The solar per-

turbing potential R S may be written as

RS = _s 17 s rl (2)

where _s is the gravitational constant of the Sun and r s the radius vec-

tor from Mars to the Sun.

--+R =
_ r m

with J2

R
e

The potential of Mars can be expressed as

+ _--\-_/ (i - 3 sin 2 5) + higher order term (3)

the second harmonic coefficient

equatorial radius of Mars
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8 the planetocentrtc latitude

R the perturbing potential due to the figure of Mars
m

The higher order terms indicated in (3) will henceforth be omitted and R
m

will be taken as the perturbing potential due to J2" Then the disturbing

function as referred to henceforth will be given by R + R . Equation (3)
m s

then is easily rewritten in terms of the satellite's inclination I, (mea-

sured from the Martian equator), true anomaly v and the argument of peri-

center _ as

: + --_ 1 - _ sin 2 I + _ sin I cos 2(v+(_) (4

Since the effect of the terms periodic in the satelllte's mean anomaly M s

not significant, _ can be averaged over 2_ on M. Transform, therefore

the true anomaly v to the mean anomaly M by the dlfferentlal equation

d..v_v= a 2_ lf_-_ 2 (_:
r

and express the radius as a function of the semimaJor axis

and true anomaly,

r = a(l-e2)

1 + e cos v

so that by obtaining from (5) and (6) the relations of Tisserand (2)

a, eccentricit,.

(_)3 = 2'_" S021_ (_)3 dM- (1_e2)3/2

3 3

(a) sin 2v =(a) COS 2v : 0

the averaged disturbing potentlal due to J2 becomes
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-Rm = _ Rm _ = 2a3(l_e2)3/2 - 2 sin2
(_)

Note that R is also independent of the argument of pericenter _.
m

Next, consider the expression for the solar perturbation potential R .
s

If B denotes the angle between r and rs, then the first term of Eq. (2)

can be developed in a series of Legendre polynomials as follows:

1 1 / r [r\2(3 2 1) }l_s- _f--_ i +rC°SB+s \rs/-- cos B- +...

so that, together with the fact that

(9)

r • r s

COS B = r_ (10)
S

the potential R becomes
s

Rs .... (111
2r s L \ rrs /

s

From Fig. 2 the unit vectors e r and e s, in the radial direction of the

satellite and the Sun, may be written in component form as

icos cossin cosIsin:l-- r
= -- = sin _ cos e + cos _ cos I sin (12)er r

Lsln I sin e

and, with C A= cos and S _= sin, a convention used henceforth:

CA s

_ s= i J

s - r s jcLs As
(13)
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where fl is the right ascension of the satellite's ascending node

L
s

e is the satellite central angle

A is the right ascension of the Sun
s

is the planetocentric latitude of the Sun

Thus the Sun's disturbing function becomes

2

- sL:is 2}- 3 L Cf_ A C8 - Sfl-A CL CIS8 + - 1
Rs 2r s [ L s s s s

R is next written in terms of the satellite's true anomaly via
s

CO = Cv+ _

S O = Sv+ _

= - $2S 2
2 C2C 2 CvSvS2_D +C0 v _ v

1 C_$2(/._ 1 C_S2_DS8C 8 = SvCvC2_ + _ -

so that

R
s

2

2r 3
s

aC2(v_ ) + 3 _ S2(v+_) + _ e- i

where

_:[VL:ICO-As-<CIC_-A:_-As]

F2C_<_ SL:I)2]C = LCLs f__A s + ICLsS__As -

(14)

(15)

(16)

180



HIGH ECCENTRIC|TY ORBITS ABOUT MARS

Holding the Sun's variables L s and A s constant and integrating R s with

respect to time, the short-period terms depending on @ can be removed. The

average then is

1 f02_RS = _ R s dM (17)

which may be readily integrated by introducing the eccentric anomaly

through

,_ = (i- e %) dE (18)

and the relationships

(C E - e)
C -

v 1 - e C E

C2v =

(2 - e 2) C_ - 2e C E + 2e 2 -1

(1 - e CE)2 (19)

Thus

1 fo_Rs =_ Rs(i-e CE) dE

2

_S a _02x (1 - e2)2(1 - • CE)
= _ CV)2 [I, C2V ] dE4x r 3 (1 + e

s

= _s--_a4xr 3 _0 (1 - e CE )3 1,

s

(_-"_>_- _Y___÷_e_-'l
(1 e CE )2 J

dE

(20)

181



TRAJECTORY ANALYSIS AND GUIDANCE THEORY

Integration yields

2 2

U s a _02_ CE)3 _s a (2 + 3 e 2)4_ r 3 (1 - e dE = _4 r

s s

2
2 2

_s a _02_ [ 2 2e CE + 2e 2 - 1](l- e CE)dE 5 a e
4_ r 3 (2 - e 2) C E - = ._ tl s

r s

(2l)

so that the Sun's disturbing function with the short-period terms removed is

2

-- _s--a3 [? e2 0 C2O + 15 e2 _ $2 + (2 + 3 e2)(3 {_ - 1)]
RS 4 r

s

(22)

or, substituting for 0, _, and e:

2

sa{ ;]R's :--4 rs3 ? e LCLsC_As_ ICICLsS_As_SLsSI2r22 c_

+ 15 e21CL S L SIC _ A -
L s s - S

,r,
+ (2 + 3 e )L_ILsC__As +( ic+_As-SLsSi)]-i (z3)

The next step is to remove the medium period effects caused by the motion

of the Sun. One assumes that the central angle of the Sun 8 (see Fig. 2)
s

varies considerably faster than either _ or _, and hence R may be
s

averaged with respect to the motion of the Sun. The variations of _ and

during one revolution of the satelllte are given by
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d'-G-- _ J2

R 2

(2

(24)

2 2

de - 2 J2 CI _ - J2

2

n
where the mean orbital rate of the satellite is defined as

the semi-latus rectum of the orbit p is written

(25)

n = a and

p : a(l - e 2) = rp(l + e) (26)

Defining the mean motion of the Sun n to be
s

n s = ]'--_ (27)

a s

with a s the semi-major axis of the Martian orbit (equivalently, the apparent

Sun's orbit around Mars), the condition that _ and _ are (assumed) much

smaller than n s leads to

J2 R2 1/2e _m

a 7/2 (i - e2) 2
<< n s (28)

This condition then is satisfied throughout most of the "region of interest."

Introducing the solar coordinate 8 and the inclination I (see
s s

Fig. 2) through
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C O = C A C L
s s s

sL = sZ se (29)
s ss

C L S A = cI se
S S S S

the function R takes on the somewhat lengthy appearance
s

= - _S_....._a

RS 4 a: _r:/ 2 + 3e 2) 4_fl 20s + _ sS28s

- $2 I C20 fl _s/ _ L\ s_c2e i fl- \ I _ fl I s
S S S

+ - |C C C +2C S C S + SIsS ICISIS_SI $28 s _I _ I s I I _ I s C2o s

+ + + + -- + ClS 2kCI _lCis 2CISIC_SI sCIs SiSis

2 2 2 2 2_ _
(C2 2 SISIs)2 2 _C2 +2C S C, S2e, s2c2 _ l+ ICfl CI + -C_C2o Q fl I C28 - $2C C

s s s s s s 2 sJ 2_

__ _(_ ,) _ 1_+ +CIS fl - ISGCGCIs + C2e-_-e LCIS C2Os 2 CISIS2SI S2O s- _I flCI s +SISIs/ s

(C ) 2 2 -2C_+C S C I -$2C_ C20 2C2 -' 1_C_CI s +SISIs CliO20 S sS2es fl S S+ - -sn isJC_I

(30)

As before, the following trigonometric identities are introduced:
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C28 = C2v C2_o - S2v $2_
s s s s s

=

$26 s S2vsC2_ s $2¢o C2 vs s

and recalling relations 7, applied to the Sun:

(31)

rs/ (I - e2) 3/2
s

8/ C2vs = \rs/ S2vs = o
(32)

A further slmplificatlon is introduced here by assuming that the Sun's

orbit is circular so that

The slowly varying disturbing function due to the Sun then becomes:

2 2

-- n s a

rs = --q--
13 2 2 3[2 + 3e 2] C2_SIsS I + _ CISIS I C I C_

s s

3 2 2 _ + _. e2 1 S_ tl + CI>I 2_+_ C2_-_)- C I
+ 2 SIs s

s s

F.
15

2L_ 2 - C2_+20_)- -_ e CiSls(C2_l_2tn

- _ SIsSICIs(C_-?_ - Cfl+2_

(33)

(34)
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The total slowly varying disturbing function due to J2

turbation is given thus in Keplerian elements of the satellite and the Sun by

Eqs. (8) and (34).

and the Sun per- •

III. LONG PERIOD VARIATIONS IN ECCENTRICITY AND INCLINATION

In the previous section the slowly varying disturbing function, periodic

in only fl and _, was determined. The long-period changes in the orbit

elements corresponding to that disturbing function can be readily determined

by invoking the techniques of Hamiltonian mechanics and canonical transforma-

tions. (3) If one introduces the slowly varying Hamiltonian through

2

-- _m (35)
= - (Rm + RS) 2

2L

where L = /_m a ,

then the canonical equations of motion in terms of (slowly varying) Delaunay

elements are

bE 6 b_ _ b_
L = -_ = -_ = -

=_ g =_ =_ (36)

where _ = M, g = _, h = _ are generalized coordinates

L =V_aa, G =J_a(1 - e2), H = G cos I are generalized momenta

The set of Eqs. (36) may be integrated if one can find a suitable canonical

transformation, determined by a function _, such that the transformed Hamil-

tonian is a function of the new momenta only. Such a transformation, from the

old variables (L, G, H, _, g, h) to a new set (L', G', H', _', g', h'),

will be given by the function _ which is assumed to be expandable in powers

of the parameter J2 (A 1 is order J2):

186



HIGH ECCENTRICITY ORBITS ABOUT NVkRS

,_= _r.,+ go'+ hH'+ _(L', Q',H', _,g, h) + ... (37)

Slnce the canonical form of the equations of motion is preserved and the new

Hamlltonlan Is a function of L t, G t, H I only, It follows that L', G I , H'

are constants and _' g' h' are linear functions of time. _3} The old

t _

variables are related to the new by the formulas

b_ bA b_

_, b_ g, _"_ h, b_ (38)

In order to apply the theory to the present problem, the disturbing function

must be written in terms of the Delaunay variables. It turns out to be con-

venient to write it as a sum of three parts, which follow from Eqs. (8), (34)

and the definitions (36)_ and to introduce the perturbing Hamiltonlan _p:

= = . R ÷ ; (39)

where the terms independent of g and h are

n2 L4 (s _2113H2 iI_ss = _ 5 - 3

4 _tm G-2

_m J2 e H 2
(40)

and those periodic in g and h

n 2 L 4

: " F ]Rsp = _ i C2h + _2Ch + _3C2g + _4C2h+2g + _sC2h-2g - _6Ch+2g + _7Ch'2g

4 _m

(41)
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The coefficients _i are given by

C_I = 8 Sl 5 - 3 i -
s

c5=- _ 1--_s_ 1- 1-
s

-s,(o:_:)<,5 4 -= _-_ is 1 - +

-s,
5 5 = _ I s

_6 = -_ C I S I i - 1 - 1 +
s s

5 7 : -_ C I S I i - - 1 -
s s

The theory of this study assumes that the function

the following approximations are used for R and
m ss

_m J2 R2e

m 0(I - e2)3/2

_ n 2 a 2 (2 + 3e 2)
ss $

dominates
ss

(42)

If

(43)
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then

_m J2 Re2 }1/5a << n:(l - e2)3/2(2 + 3e 2) (44)

This inequality holds throughout most of the "region of interest" (see Fig. 1).

The Hamiltonians associated with the three principal parts of the func-

tion R are
m%s

= -R
sp sp

g _--_
SS SS

g =-g
m m

s SS sp
(45)

Note that since _ is already ignorable we may assume _ to be indepen-

dent of _ so that L = L' _ constant. Utilizing Eqs. (38), the perturbing

Hamiltonian in terms of mixed variables (L t, G', H ' , g, h) becomes

+ _sp L', G' + _, H' + _--_, g, h (46)

Expanding in Taylor's series about

in _ and _ yields
ss sp

G' and H' and retaining only one term

=_
p m (L',G',H') + _ss (L',G',H')+ -- +_G,_ _

+ _ (L', G', H', g, h) (47)
sp
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In order that H be a function of only (L', G', H') one requires that

bE b_ I b_m b_1

_sp (L,, o,, H', S, h) + _'--'_"_-+ _H'--"b--g= 0 (48)

This leads to the condition that

4R2 (
3 _m J2

e 1 -

4L ,3 G ,4

4 R 2 H'

G,2/_- + 2L,3 G ,5 _-h

n 2 L ,4
s

2 [_1C2h + _2Ch + _3C2g + _4C2h+2g + _5C2h-2g

4 _m

- 56 Ch+2g + _7Ch_2g] = 0

Therefore, choose _1 so that

= _ 4L '3 G '4 n2s L'4

4 R 2 2
1 3 _m J2 e 4 _m

[_llS2h + _22Sh + _33S2g

(49)

+ _44S2h+2g + _55S2h_2g + _66Sh+2g + _77Sh_2g]

where the quantities _lj are to be determined. Substituting _i into

Eq. (49) and taking the partial derivatives, the followlng condition is

obtained:

(5o)

_lC2h + (_2Ch + (_3C2g + (_4C2h+2g + _5C2h_2g - _6Ch+2g

+ (_7Ch_2g + 5 G'2/ (2C_33C2g + 2_44C2h+2g - 2(_55C2h-2g

190
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H !

: + 2_66Ch_2g - 2_77Ch_2g) + 2 _7 (2_11C2h + _22Ch

• • + 2_44C2h+2g + 2655C2h_2g + _66Ch+2g + 677Ch_2g) = 0

Then equating coefficients

(51)

1 G'

611 = _ 61 _v

1 G'

633 = _ C_3 1 - 5 G--_/

_4

644 = - _ H '2 H'2 ---2_T-
G ,2

65

2 ---_+ 2 -
0' _"

666 =

6;(6

67

677 = 15 HI2 H l2 --+_T-
G ,2

With the C£1j's substituted into (50) the function '_i takes on the

appearance

(52)
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n  "70'4I--
s G _ 1 G f C_3

= 3 _m j26 R2e C_1 _7 S2h + _ C_2 _7 S h + 2(1 - 5 _,2/H'2_ S2g

_4 0_5
- 4-

G, 2 G ,2

I

% % I (53)

H 12 H i Sh+2g Hi2 H i

J2 G' 2 G' 1 2 Gi2- + _7 - 1

The coefficients of the trigonometric terms in _I contain six critical

divisors. An examination of these divisors reveals eleven critical inclina-

tions which are summarized in Table i.

From Eq. (53) the long-period variations in the elements _, g, h, L, G,

can be found by appropriate partial differentiations. In this investigation,

the variations in e and I are of primary importance, and are obtained as

follows.

Form the differential of G from its definition (Eq. (36))

or

o o b_Sl
Be =---_-=

ae 2
m L e

Substituting for A1 the variation of
e is given as

(54)
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_e =

2 L,5 G,5
n C_3s

6 R 2 e' L
3 B m J2 e - 5

C_4

C_5

- 15 H'2G'2-+ 2 _7_H' ii C2h-2g + 15

- _ H'2- H' ) Ch-2gG,---'_+ _-T - i

which becomes

C_6

H ' 2 H ' \ Ch+2g

G,2 G' 1

S2I (1 + C I,)2 SI2 (1 -C I,)2
s s

(55)

SI CI SI'(1 + CI ')2 SI CI SI '(1 - CI') /

+ s s - s s Cf_, _

(5 C2, - CI, - 1) C_'+2_' 5 C_' + C i, - 1
(5e)

In order to simplify the equation and the checking of dimensions the parame-

ters n (mean motion of satellite) and p (defined previously) have been

introduced. It appears from an inspection of Eq. (56) that at a critical in-

clination the amplitude of a term in _e becomes infinite while the frequency

approaches zero. Actually, as will be shown later, near any critical inclina-

tion, other than I = 90 °, 5e experiences a finite maximum variation.
c

To obtain a corresponding expression for 5I it is convenient to express

cos I' in terms of H' and G' by using
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(57) "

Taking the differential of both sides

{._} _H _ I'I _13: T 132

I
5I =

/.ma(1 - e 21 S I

(58)

To assist the reader in evaluating the equations of variation the partial

derivatives of _1 with respect to the variables g and h are shown below

/

65 66 6 7 J

- H '2 H _ C2h+2g H ' 2 _ H ' Ch+2g HI__22 H ' /-- + 2 _-3- - 1 5 13'
G '2 G '2 -- - Gt 2 + _ - 1

_1___ : - n23S_m6L'7J2 G'4R2e/ 1

G t 1 13'

61 _-T C2h + g 62 _-T Ch

_4 C_5

1
"1

% % J
(59?

+ H '2 H' Ch+2g + H '2" - H'

2 2 G' 1 2 ---_+ - 1
G' G' _'T
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The variation in I written in canonlcal variables is

n 2 g ,7 G, 4 {, C_3 C I,
5I = - s eV2)I/2Sl ' I 1 H'2_C2g3a,l"_Om3/%.¢1- -_)

C_4 C I , C_5 C I ,

( 5 H'2G,2--- 2 G"7 - 1H' iC2h+2g- (5 H'2_,2+ 2 _-TH' 1I-

C2h-2g

(_6 CI' _7 CI'

o,
I C_I I C_2 C_4

C_5 C_6

(5 H'2 H' IC2h-2g + (5 H'2 H' I Ch+2g
2 + 2 _'7 - 1 2 G' 2 G' 1

_7

_ H'2 H' I Ch-2g

and in Keplerlan elements

n_ _ Ir_-_ - _-'__;,_,5( s_(a'_ e'2/tj; e'2) 3/2 ._2
_I : 4\-'_)\_ee/ SI' s -2--

1 - 5 CI,

(60)

C?.,_,
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si2 (1÷ cI,)2c I
s

4 Ci2 , - C I , -

'+2to'

s 2 (1 - ci,)2c II
s

/ 2 1) c2fl' -2_ '
4\5 Ci, +2 CI,-

S I CI SI,CI,(1 + Ci,)
ss

Ci, - CI, -

C_ ,+_,

S I C I SI,CI,(1 - Ci,)

s s

)CI, + CI, - i

2 2

S I S I ,
s

+ _ C2n' + SIs CIs sI 'Cn'

2 (1 + CI, )2 S I (1 - CI,)2S I
s s

2 - 2 CI, - 4 Ci, + 2 CI, -4 CI,

f-240 t

s I c I (1 + ci,)si, s I c I (1 - Ci,)Si,

s s s S

2 Ci, - ci, - 1 2 cX, ÷ ci, - 1

(61)

Note here that the inclination I
e

appear in the expression for 5e.

= 90 ° is critical for 51 but does not

IV. LONG-PERIOD BEHAVIOR NEAR CRITICAL INCLINATION

The technique outlined in the previous section for obtaining long-period

behavior of the elements proves unsatisfactory when the inclination is near

one of the critical values (see Table 1). In this section a sultable analysis

will be conducted to determine the behavior of the satellite's motion while in

the neighborhood of a general critical incllnation. From Eq. (41) one can

write the periodic part of the Hamiltonian in the form
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Rsp -----T 71 cos (2g' + lh') + 8j cos jh' (62)

4 _m =-2 j:l, 2

The critical Incllnatlons are just those at which one of the trigono-

metric arguments in (62) has a zero rate due to J2" Thus the terms of

cos jh' yield a critical inclination of 90°; however, since they do not con-

tain the variable g' they will contribute nothing to the variation of e'.

Of course, these terms will contribute to the long-perlod behavior of the

inclination, but since the primary emphasis in this investigation is centered

on the radius of pericenter (equivalently e', since 8r = -a'Se'), these
P

terms are not of direct interest here. Thus in the following analysis these

terms will also be considered to have been removed by a suitable generating

function, so that the total Hamiltonlan of interest will be

_Z4 R2 <3 i) n2 L'4 " L_22)<3 H'2 i>
P 4L '3 G '3 G '2 4 _m \ G'2

2 4 2
n L'

+ 2 7i COS (2g' + ih') (63)

4 _m i:-2

Specifically, the coefficients 7i are given in terms of the _i of

Eq. (42) as

70 = G3 7-i = 57

71 = -_6 7-2 = 55

72 = 54

(64)

In order to analyze the motion near the critical inclination defined by

2g' + lh' : 0, a determining function _* is introduced which is taken to

be _ with the i term of interest absent. Thus _* will "remove" all the
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from the Hamiltonian except the i term, so that _p(= -R m+ s) "periodic terms

now reads

*,2 L,4n

"-_Rm+s = -:p = _ss ÷ _m ÷ --2--s 7i cos (2g' + ih') (65)" "

4 _m

Introduce now a contragredient transformation to new variables

(66)

=I-'oj:o,iLw'J i/2 1 H'
(67)

Then the Hamiltonian is of the form

n 2 L ,4

-'_ _ (G", H", L') + R$ (G", H", L') + _ 7_ COS 2g" (68)
R = m

m+s ss 4 _m

Note that L' and H" are constants and, since the Hamiltonlan itself

is a constant in the absence of explicit time terms it follows that R is
m+s

also a constant. Define now G" as that function of L' and H" for which
c

c

(G" G"):and expand R about -
m+s C

= 0

R
m+ s

:: [: _*1 (°"-°">--- R :j: G" H", L') + (G , H" L') + _ C
ss ( c' ' ss G"=G"

c

II 1
G"=G"

c

(69)
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HIGH ECCENTRICITY ORBITS ABOUT MARS

Ignoring the fluctuations in 7i by comparison with its value at G"
c

valid for small eccentricity (see Appendix). Using the definitions

is not

31:
c

G"=_-"
c

c

I n2 L'4 1

s

f=_4 _l2 _ Gt'=G"

c

(70)

equation (69) may be written as

31(G" G:) 2 - G")- + 32(G" c + 33 + f cos 2g" = constant (71)

Completing the square and suitable rearrangement yields the equation

L\H" H") 231.,,J
f

+ H,,_ cos 2g" = K = constant (72)
_BI

which is now recognized as being in the form of the simple pendulum equation.

The solution of this problem is well known and results in a plot of phase space

contours which describe the motion of the pendulum. In the present problem,

the variation of G"/H" with the angle g" follows from

G" G" [K
]f 32

_,- _ cos2g"jI/_
_1 H"2 231 H"

(73)
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Note that g" can librate about _/2 or 0 according to whether f/S1 > 0

or < O. As in the pendulum problem, the separatrix is determined by setting

K = f/81H ''2 and varying g". The motion bounded by this contour represents

a libration of O"/H" about some average (G"/H")ave, and as can be seen in

Fig. 3, the maximum fluctuation of this variable follows a contour just

inside the separatrix and is equal to 2_.

Recall now that it was assumed earlier that _ss << _$m' so that 81

can be taken as

_I = 2L_G,,2 Rm G"=G"

c

(74)

which, written explicitly in terms of the old primed variables, is

4 2

3 _m J2 Re <3 i 2 4/_i - 2 L,3G,5 0 cos 2 I' - lOi cos I'+--_ - (75)

The maximum variation in G"/H" written in terms of the original orbital

elements is

5(-_,') = 2 _/'_ = [l 81 H,,2 (76)

from which the maximum variation in the inclination is found to be

bIlmax =

ic_ile,(l_e,2)3/4nsa,5/2 1r 5 *15 cos 7 i
I

sin I ' [

Re c L'I_NJ2](30 cos2 Ic-lOi

1/2

cos I_+ i2-f+41_

(77)

since

i] J
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* 4 et '
with 7i defined by 7 i - 7 i (I s , I')

15e f2 c

The theory developed near I T is valid if 5I is small enough so that
c

I' does not get too near any other neighboring I'. To prevent this occur-
c

fence, an upper limit is assigned to the maximum variation 15IImax such that

1

[SIJma x _ 3 IIc - I_. I =
i j

where I_i is the I' under investigation and I'c c.

boring one. J

The corresponding maximum variation in the eccentricity is found from

the constancy of H" i.e., 8H" = 0 which gives

(78)

is the nearest neigh-

2(1 - e '2) sin I'

]_e,Jmax = c [_I[ (79)

e'12cosI'- iI
c

or

2n a5/2(1-e'2)3/2

f_e,lm_x = s R
e

I .

5 7i

( i2 )_mJ2 [ 30 cos 2 I' - lOi cos I I + - 4 Jc c 2-

Now define the constant

K i = 2n R 3/2
se

K i by

. [i/25 7i

( i2 ))tlmJ2[ cos 2 I' - lOi cos I' + - 4 J
c c -'2

1/2

(80)

(81)

so that

(82)
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Then JSIImax can be written in terms of Ki as

,2 cos I' -iJc ,2)3/4 (_e)5/2JBIImax = 2 sin I' K i e'(1-e
c

Invoking then the condition on a maximum allowable J z_IJmax

one can write an upper limit a' as a function of e'

analysis as

(83)

(Eq. (78))
consistent with the

2sinIc_[ 1]}cos I_ - iLKi e'(1-e'2) 3/4

2/5

(84)

or, defining constants

then

(rp)max

R
e

The constants B i and K i

B i by

2 sin ic

Bi = ]2 cos I c - ilK

B i e '-2/5 (l+e,)-3/10 (l_e,)+7/l0

for the different values of i(-2 < i < 2)

(85)

(86)

corresponding to the 10 different critical inclinations are listed in Table 2.

The bounds (86) on the applicability of this analysis are shown in Fig. 1.

Finally, knowing the maximum fluctuations in e', the maximum variation

in the radius of pericenter is determined as

7/2
rp [l+et_7/4

lSrpimax = a' l_e'Imax_ Kt R--_ U---_/ (87>
e

This maximum variation of the radius of pericenter with e' near the different

critical inclinations is shown in Fig. 4 for r = 4000 and 6000 km. For r
P P

above the theoretical limits of Fig. i, the corresponding portion of the curve

is dotted in Fig. 4 for a specific index i, the theory being open to ques-

tion since the fluctuations in I W may overlap a neighboring critical
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inclination. In case of overlap a simple analysts of J_elmax is not

possible.

This investigation was purposely limlted to large values of e' due to

the mission requirements imposed on it; in fact, the analysts of Section IV

was invalld for e t close to zero. For e' close to zero, however, the

maximum variation in e' agrees with that found in this analysis; this agree-

ment is demonstrated in the Appendix.

APPENDIX

In this section, the eccentricity is assumed to be of order J2 I/2 and

it ls assumed that the incllnatlon is near one of the critical Inclinations

I_1 other than 90 °.

Recall that in Section IV it was found that the HaLtltonian could be

written in the form

_I(G 't - G_) 2 + _2(G t' - G")c + _3 + f cos 2g" = constant (A.I)

Then from the constancy of H t'

i G'
H" = H v - _ = const

it follows that

or

Next, expand about

_ (cosi,-_)oconst (A2)

_n_l-e'2>+__o(cosI'-_)-coo.t

e'_:__n(cosI'-_)+con.t+0(J_)

I t = 1_:
c

(A.3)
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[_ ( _) slni, ]e '2 2 n cos I' - + c (i,_ic) + ...
= C COS I v -

C 2

where Hl

and I ' -I '
c

2 sin I'

e,2 c (I'-I') +H 1 + O(J_) (A.4) " "- l c
COS I I - --

C 2

iS a small constant of order J2 if the initial values of e '2

are 0(J2). Therefo_

(cosi _)°Iv-I' =
c 2 sin I'

c

From the constancy of H"

5H" = 5G" (cos I' - _--) - G" sln I' 5I' =Oc c c

so that

G" sin I'

c c 5I' (A.6)
5G" - i

cos I' - --
c 2

Substituting 5I' = I'-I'
c

from (A.5)

G"c [e ]G"-G" = t '2c -'2 - H1

the Hamlltonlan now takes the form

r°_ )]_ 0"_lL'-'2" (e'2 - H1 + _2 _ I e'2 - H1] + e'2f'll" cos 2g" = const_-nt

where % f_ = f/e '2

(A.7)

(A .8)

%This _ e'2form of f does not, in fact, contain a i/

of definitions 70, 64, and 42 reveals that f has an

factor since inspection

e '2 factor.
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Combining powers of e', Eq. (A.8) is rewritten as

-- ,4 (52 - 2 -- e '2 2g"81e + 8zH l) + f_e '2 cos = constant (A.9)

G "2 G"
c

where _l = 81 _ ' _2 = 82 -2- "

The interplay between g" and e' (and hence I') may be more easily

visualized if one introduces the coordinates

= e t COS g"

8 = e' sin g" (A.lO)

so that Eq. (A.9) becomes

_1(_2+ 2)2+ (_2-2_IHI)(_2+ 2)+ _.(2_ 2) =_ (A.II)

The equilibrium poin%s of the contours in the _-q plane are found from

_ = _i 2 _l(_ 2 + 82) + (_2 - 2 _lH1) + f_j = 0 (A.12)

_-_ = 812 _i(_2 + q2) + _2 - 2 _IHI) + f_l= 0
(A.13)

Solution of these equations yields equilibrium points at the origin of the

_, q plane and on the _ and 8 axes at

and

respectlvely.

(0'82)= ' i 2_l

f - 82

(_2'°)= ' l +
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From (A.11) one can see that the contours are symmetric about both axes; de-

pending on the value of H I a variety of contours are possible about the

equilibrium points, c.f., Fig. 5.

The "separatrices" between different types of contours are shown by

dotted lines. As H I increases, (a) -_ (c) -_ (e) or (b) -_ (d) -_ (f) and

the separatrices, after appearing in (c) or (d), grow and then change to cir-

cular form in (e) or (f). In (g) and (h) are shown their transition forms

corresponding say, to H I =Hlc , and in Fig. 6 is shown the situation for H 1

slightly larger.

On contours outside the circle-pair, and for f /_1 < 0 for example,

from (A.II) one finds that e (corresponding to y = 0) is given by
max

2
e : _+ P_+k (A.14)

max

k = --

while emi n (corresponding to _ = 0) is

" = /;÷
emln

_2 - f

where _ ffiH 1

(A.15)

Then

2 2 = P-Q (A.18)
(_e)max (emax + emin) = emax - emin "P_++k- ; _+k

+ is an increasing
which is a decreasing function of k, while ema x eml n

function of k. It follows that (Se)max decreases as k increases, and

hence is smaller outside the clrcle-pair than on it.

Thus it is apparent in Fig. 6 that the largest fluctuation, _e, in eccen

trlcity occurs on a contour Just inside a separatrix circle. It will be shown,
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' moreover, that this (_e)max remains constant as H I increases further in

spite of the growth of the radius of the separatrix circles. The overall

maximum _e is thus Just the diameter of the circles in (g) or (h). To

• , evaluate this, note that for sufficiently large H 1 the family of contours

(A.11) includes the circle-pair

or

where

2 2 f*
[(_ _ 7)2 + _ - p2][(_ + 7)2 + _ - p2] = O, --< 0 (A.17)

[ 2 + (_ - 7)2 _ p2][ 2 + (_ + 7)2 - p2] = O, _--.-> o

But (_e)ma x = (P + 7) - (P - 7) = 27, independent of p. Thus

in agreement (for small e') with Eqs. (77) and (79) of the large e'

which yield

( ')max II
= e'G% LI2T_Ij

(A.18)

(A.19)

theory,

(A.20)
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TABLE I

CRITICAL INCLINATIONS

Critical Divisors Critical Inclincations

I
c

cos I c

2
1 - 5 cos I

c

5 cos 2 I
c

5 cos 2 I
c

5 cos 2 I c

5 cos 2 I
c

- 2 cos I - 1
c

+ 2 cos I - 1
c

- cos I - 1
c

+ cos I - 1
c

90 °

63.4 ° , 116.6 °

46.4 ° , 106.8 °

73.2 °, 133.6 °

56.1 °, Iii.0 °

69.0 °, 123.9 °

Index

i

0

2

-2

1

-i

TABLE 2

COEFFICIENTS B i AND K i

.6

4.5

4.6

2.6

K i I e

5.6XI0 -3

1.4x10 -2

2.8×i0 -3

2.4×i0 -3

-4
5.9×10

63.4 °, 116.6 °

56.1 °, Iii.0 °

46.4 °, 106.8 °

69.0 °, 123.9 °

73.2 ° , 133.6 °
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